Align aminobutyraldehyde dehydrogenase (EC 1.2.1.19) (characterized)
to candidate AZOBR_RS26825 AZOBR_RS26825 aldehyde dehydrogenase
Query= BRENDA::Q93YB2 (503 letters) >FitnessBrowser__azobra:AZOBR_RS26825 Length = 494 Score = 299 bits (765), Expect = 2e-85 Identities = 183/482 (37%), Positives = 268/482 (55%), Gaps = 16/482 (3%) Query: 10 LFINGDWKAPVLNKRIPVINPATQNIIGDIPAATKEDVDVAVAAAKTALTRNKGADWATA 69 L I G+ + K V+NPAT ++I + DVD AV AA A +GA WA Sbjct: 18 LLIGGELRPAATGKTFDVVNPATGDVIATAADGGERDVDAAVRAAVAA----QGA-WARL 72 Query: 70 SGAVRARYLRAIAAKVTEKKPELAKLESIDCGKPL-DEAAWDIDDVAGCFEYYADLAEKL 128 S R R L ++ E+ +L +++ GK + E+ + VA +Y LA +L Sbjct: 73 SARERGRLLVECGRRLVGHAEEIGRLLALETGKAIRTESRVEASLVADTLTFYGGLASEL 132 Query: 129 DARQKAPVSLPMDTFKSHVLREPIGVVGLITPWNYPMLMATWKVAPALAAGCAAILKPSE 188 + P M TF REPIGVVG I PWN P+ + K+APAL AG A I+K +E Sbjct: 133 KG-ETVPFHPKMLTFTQ---REPIGVVGAIIPWNVPLYLMALKIAPALVAGNAVIVKSAE 188 Query: 189 LASLTCLELGEICKEVGLPPGVLNILTGLGPEAGAPLATHPDVDKVAFTGSSATGSKIMT 248 A L L + ++ ++ LPPGVLNIL+G GP GAPL THP V KV FTGS TG I Sbjct: 189 EAPLAALRVIQVMNQL-LPPGVLNILSGDGPGCGAPLVTHPGVGKVTFTGSVETGKIISH 247 Query: 249 AAAQLVKPVSLELGGKSPLVVFEDVDLDKAAEWAIFGC-FWTNGQICSATSRLILHESIA 307 AA + PV+LELGGKSP++V D DLDKA + A+ G F GQ C+A+SR+ +HES+ Sbjct: 248 LAADKLIPVTLELGGKSPMIVMGDADLDKAIDGAVAGMRFTRQGQSCTASSRIFVHESLH 307 Query: 308 TEFLNRIVKWIKNIKISDPLEEGCRLGPVVSEGQYEKILKFVSNAKSEGATILTGGS--- 364 F++++ + + + DPL+E +G ++S Q+E++ +++ ++ I S Sbjct: 308 DAFIDKLKAKVDAMTMGDPLDEATDIGTIISPQQFERVQSYIALGETTAGAIAHRCSALP 367 Query: 365 RPEHLKKGFFIEPTIITDVTTNMQIWREEVFGPVLCVKTFSTEEEAIDLANDTVYGLGAA 424 E L +G F++P + T + + ++ REE+FGPV CV F E+A+ +AND+ +GL A Sbjct: 368 TDERLARGLFVQPVLFTGLANDHRLAREEIFGPVTCVIAFRDYEDALAMANDSDFGLAAT 427 Query: 425 VISNDLERCERVTKAFKAGIVWVNCSQPCFTQAPWGGVKRSGFGRELG-EWGLDNYLSVK 483 + + DL T+ +AG V VN + +GG K+SG G+E E LD++ K Sbjct: 428 IWTRDLRTALDATRRLQAGFVQVNQNLVVQPGLSYGGFKQSGLGKEASLEAMLDHFTHKK 487 Query: 484 QV 485 V Sbjct: 488 TV 489 Lambda K H 0.318 0.135 0.416 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 534 Number of extensions: 27 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 503 Length of database: 494 Length adjustment: 34 Effective length of query: 469 Effective length of database: 460 Effective search space: 215740 Effective search space used: 215740 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory