Align Monocarboxylic acid transporter (characterized)
to candidate AZOBR_RS19235 AZOBR_RS19235 actetate permease
Query= SwissProt::Q8NS49 (551 letters) >FitnessBrowser__azobra:AZOBR_RS19235 Length = 556 Score = 416 bits (1069), Expect = e-120 Identities = 236/540 (43%), Positives = 329/540 (60%), Gaps = 36/540 (6%) Query: 23 ISVFVVFIIVTMTVVLRVGKSTSESTDFYTGGASFSGTQNGLAIAGDYLSAASFLGIVGA 82 I++F++F+ T+ + K T ++DFYT G SG QNGLAIAGDY+SAA+FLG+ G Sbjct: 42 IAMFLLFVAGTLGITYWASKRTRSASDFYTAGGGISGFQNGLAIAGDYMSAAAFLGLSGM 101 Query: 83 ISLNGYDGFLYSIGFFVAWLVALLLVAEPLRNVGRFTMADVLSFRLRQKPVRVAAACGTL 142 + G+DG +Y+IGF V W + L L+AE LRN+GRFT ADV S+RL Q P+R AA G+L Sbjct: 102 VFAKGFDGVIYTIGFLVGWPLMLFLIAERLRNLGRFTFADVASYRLGQTPIRSLAAVGSL 161 Query: 143 AVTLFYLIAQMAGAGSLVSVLLDIHEFKWQAVVVGIVGIVMIAYVLLGGMKGTTYVQMIK 202 V FYLIAQM GAG L+ +L + V +VG++MI YV GGM TT+VQ+IK Sbjct: 162 TVVCFYLIAQMVGAGKLIQLLFGLD----YTYAVVMVGVLMILYVTFGGMLATTWVQIIK 217 Query: 203 AVLLVGGVAIMTVLTFVKVSGGLTTLLNDAVEKHAASDYAATKGYDPTQILEPGLQYGAT 262 AV+L+GG ++ L + LL AV HAA+ IL P A Sbjct: 218 AVMLLGGCTVLVGLALAQFGFNPERLLQQAVAAHAAN----------AAILRP----SAA 263 Query: 263 LTTQLDFISLALALCLGTAGLPHVLMRFYTVPTAKEARKSVTWAIVLIGAFYLMTLVLGY 322 + + +SL+LAL G AGLPH+LMRF+TVP AKEARKSV +A IG F+++T+ +G+ Sbjct: 264 MADPIAAVSLSLALMCGPAGLPHILMRFFTVPDAKEARKSVVYATGFIGYFFILTVTIGF 323 Query: 323 GAAALVG--PDRVIAAP---GAANAAAPLLAFELGGSIFMALISAVAFATVLAVVAGLAI 377 A +VG P + AA G N AA L+ +GG++F+ ISAVAFAT+LAVVAGL + Sbjct: 324 LAIVIVGTNPAYLDAAGKILGGGNMAAIHLSKAIGGNLFLGFISAVAFATILAVVAGLTL 383 Query: 378 TASAAVGHDIYNAVIRNGQSTEAEQVRVSRITVVVIGLISIVLGILAMTQNVAFLVALAF 437 ++AV HD+Y V++ G +TEA ++RVSR+ + +G+I+I LG+L QN+AF+V LAF Sbjct: 384 AGASAVSHDLYARVLKKGNATEASEMRVSRLATLALGVIAITLGLLFENQNIAFMVGLAF 443 Query: 438 AVAASANLPTILYSLYWKKFNTTGAVAAIYTGLISALLLIFLSPAVSGNDSAMVPGADWA 497 +AAS N P ++ S++WK T GA + GL+S + + L P V V Sbjct: 444 GLAASVNFPVLILSIFWKGLTTRGAFIGGFAGLVSCVAFVVLGPTV----WVSVFKFPAP 499 Query: 498 IFPLKNPGLVSIPLAFIAGWIGTLVGKPDNMDDLAAEME------VRSLTGVGVEKAVDH 551 IFP ++P L S+ +AF W+ ++ D AAE + +RS TG+G A H Sbjct: 500 IFPYEHPALFSMVIAFATTWLFSVT---DRSARAAAEAKAYEYQYIRSETGLGAASAASH 556 Lambda K H 0.324 0.138 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 690 Number of extensions: 35 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 551 Length of database: 556 Length adjustment: 36 Effective length of query: 515 Effective length of database: 520 Effective search space: 267800 Effective search space used: 267800 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.0 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.5 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory