Align ABC-type sugar transport system, ATP-binding protein; EC 3.6.3.17 (characterized, see rationale)
to candidate AZOBR_RS06625 AZOBR_RS06625 heme ABC transporter ATP-binding protein
Query= uniprot:A0A0C4Y5F6 (540 letters) >FitnessBrowser__azobra:AZOBR_RS06625 Length = 511 Score = 275 bits (703), Expect = 3e-78 Identities = 191/518 (36%), Positives = 269/518 (51%), Gaps = 22/518 (4%) Query: 12 PLLALRNICKTFPGVRALRKVELTAYAGEVHALMGENGAGKSTLMKILSGAYTADPGGEC 71 P L R + K F A R V L G +H ++GENGAGKST+M I+ G AD GG Sbjct: 6 PALETRGVNKWFGANHANRDVSLAVPKGTIHGVIGENGAGKSTIMSIVYGYLPAD-GGTI 64 Query: 72 HIDGQRVQIDGPQSARDLGVAVIYQELSLAPNLSVAENIYLGRALQRRGLVARGDMVRAC 131 +DG+ V + P+ A G+ +++Q L +V EN+ LG G+ M RA Sbjct: 65 LVDGRPVAVRSPRDALAAGIGMVHQHFMLVDPFTVLENVLLGA---EGGVTLAAGMARA- 120 Query: 132 APTLARLGADFSPAAN----VASLSIAQRQLVEIARAVHFEARILVMDEPTTPLSTHETD 187 L RL D+ + V L + +Q VEI +A++ A IL++DEPT L+ ETD Sbjct: 121 RTELTRLARDYGLEVDLDRPVGELPVGAQQRVEILKALYRGADILILDEPTGVLTPQETD 180 Query: 188 RLFALIRQLRGEGMAILYISHRMAEIDELADRVTVLRDGCFVGTLDRAHLSQAALVKMMV 247 LF ++R LR +G ++ I+H++ EI EL D VTV+R G V + A S+ L ++MV Sbjct: 181 HLFRILRALREQGKTVVIITHKLREIMELTDNVTVMRRGQVVANVATARTSREELAELMV 240 Query: 248 GRDLSGFYTK---THGQAVEREVMLSVRDVADGRRVKGCSFDLRAGEVLGLAGLVGAGRT 304 GR + K T G AV L VRD A RVKG +RAGE++G+AG+ G G++ Sbjct: 241 GRKVLLRVEKVPATPGPAVLEVSGLCVRDGAGVERVKGIGLTVRAGEIVGIAGVSGNGQS 300 Query: 305 ELARLVFGADARTRGEVRIANPAGSGGLVTLPAGGPRQAIDAGIAYLTEDRKLQGLFLDQ 364 EL + G G VR+ + A G R G+ ++ EDR+ GL Sbjct: 301 ELLEALAGMRPPAEGSVRLRGEELTATPDRFTARGLRAL---GVGHVPEDRQRVGLVTGF 357 Query: 365 SVHENINLIVAARDALGLGRL--NRTAARRRTTEAIDTLGIRVAHAQVNVGALSGGNQQK 422 E ++ D GRL +R A R +D +R ++ SGGNQQK Sbjct: 358 EAQE-CAILGHQGDPAFNGRLLMDRRALFDRCASEMDAYDVRPRDPRLPAANFSGGNQQK 416 Query: 423 VMLSRLLEIQPRVLILDEPTRGVDIGAKSEIYRLINALAQSGVAILMISSELPEVVGLCD 482 ++L+R +E P +L++ +PTRGVDIGA I+R + AL G AIL++S EL E+ L D Sbjct: 417 IVLAREMERNPDLLLVGQPTRGVDIGAIEFIHRRLVALRDQGKAILLVSVELDEIRALSD 476 Query: 483 RVLVMREGTLAGEVRPAGSAAETQERIIALATGAAAAA 520 R+LVM +G L GEV P E ER + L A A Sbjct: 477 RILVMFDGRLVGEVAP----GEADERRLGLMMAGVAEA 510 Lambda K H 0.320 0.136 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 697 Number of extensions: 46 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 540 Length of database: 511 Length adjustment: 35 Effective length of query: 505 Effective length of database: 476 Effective search space: 240380 Effective search space used: 240380 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory