Align Propionyl-CoA carboxylase carboxyl transferase subunit (EC 6.4.1.3) (characterized)
to candidate AZOBR_RS21100 AZOBR_RS21100 methylmalonyl-CoA carboxyltransferase
Query= reanno::PS:Dsui_0517 (510 letters) >lcl|FitnessBrowser__azobra:AZOBR_RS21100 AZOBR_RS21100 methylmalonyl-CoA carboxyltransferase Length = 510 Score = 821 bits (2121), Expect = 0.0 Identities = 400/510 (78%), Positives = 452/510 (88%) Query: 1 MHDIIHELEKKREAARLGGGQKRIDSQHKKGKLTARERLELLLDPDSFEEWDMFKEHRCT 60 M +I+ +L+ R ARLGGG+KR+ QH KGKLTARER+EL LD SFEE+DMF +HRC Sbjct: 1 MQEILAKLDAMRSGARLGGGEKRVAGQHAKGKLTARERIELFLDEGSFEEFDMFVQHRCN 60 Query: 61 DFGMAETKNPGDGVVTGYGTINGRLVFVFSQDFTVFGGSLSETHAEKICKVMDHAMKVGA 120 DFGM K PGDGVVTG+GT+NGRLVFVFSQDFTVFGGSLSE HAEKICK+MD AMKVGA Sbjct: 61 DFGMEGQKVPGDGVVTGHGTVNGRLVFVFSQDFTVFGGSLSEAHAEKICKIMDQAMKVGA 120 Query: 121 PVIGLNDSGGARIQEGVASLGGYADVFQRNVMASGVIPQISMIMGPCAGGAVYSPAMTDF 180 PVIGLNDSGGARIQEGVASLGGYA+VFQRNV ASGVIPQIS+IMGPCAGGAVYSPAMTDF Sbjct: 121 PVIGLNDSGGARIQEGVASLGGYAEVFQRNVNASGVIPQISLIMGPCAGGAVYSPAMTDF 180 Query: 181 IFMVKDSSYMFVTGPEVVKTVTHEEVTAEELGGAVTHTTKSGVADLAFENDVEALNYLRR 240 IFMVKDSSYMFVTGP+VVKTVTHE VTAEELGGA+TH++KSGVAD+AFENDVEAL LRR Sbjct: 181 IFMVKDSSYMFVTGPDVVKTVTHEVVTAEELGGAITHSSKSGVADMAFENDVEALLQLRR 240 Query: 241 LVNFLPANNREKPPVQKTNDPAERLDFSLDTLVPDNANKPYDMKELIIKMVDDCDFFEIQ 300 ++FLPA+NRE+ P + T DP +R D SLDTLVP+N NKPYDMKELI+K VD+ DFFE+Q Sbjct: 241 FIDFLPASNRERAPERPTADPIDRDDLSLDTLVPENPNKPYDMKELILKTVDEGDFFELQ 300 Query: 301 PDYAKNIITGFARMDGHPVGIVANQPLVLAGCLDIKSSIKAARFVRFCDAFNIPVVTLVD 360 PDYAKNII GF RM+G VGIVANQP+VLAGCLDI SS KAARFVRFCDAF IP++TLVD Sbjct: 301 PDYAKNIIIGFGRMNGGTVGIVANQPMVLAGCLDIDSSKKAARFVRFCDAFEIPILTLVD 360 Query: 361 VPGFMPGTSQEYGGIIKHGAKLLYAYAECTVPKVTLITRKAYGGAYDVMSSKHLRGDVNL 420 VPGFMPGTSQEYGGIIKHGAKLL+AYAE TVPK+T+ITRKAYGGAYDVM+SKHLRGD+N Sbjct: 361 VPGFMPGTSQEYGGIIKHGAKLLFAYAEATVPKITVITRKAYGGAYDVMASKHLRGDINY 420 Query: 421 AWPSAEIAVMGPKGAVEIIFREEKNDPAKLAEREAEYKAKFANPFVAGARGFIDDVIMPN 480 AWPSAEIAVMGPKGAVEIIFR + D AK+ R EY+ KFANPFVA +RG+IDDVIMP+ Sbjct: 421 AWPSAEIAVMGPKGAVEIIFRGDIGDTAKIEARTEEYRQKFANPFVAASRGYIDDVIMPH 480 Query: 481 ETRKRICRSLAMLRDKKLDNPWRKHGNIPL 510 TR+R+ ++L+ML++K+L NPWRKH NIPL Sbjct: 481 GTRRRVIKALSMLKNKQLQNPWRKHDNIPL 510 Lambda K H 0.320 0.137 0.409 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 914 Number of extensions: 31 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 510 Length of database: 510 Length adjustment: 34 Effective length of query: 476 Effective length of database: 476 Effective search space: 226576 Effective search space used: 226576 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory