Align Phosphogluconate dehydratase; EC 4.2.1.12; 6-phosphogluconate dehydratase (uncharacterized)
to candidate AZOBR_RS15015 AZOBR_RS15015 dihydroxy-acid dehydratase
Query= curated2:P31961 (608 letters) >FitnessBrowser__azobra:AZOBR_RS15015 Length = 621 Score = 216 bits (551), Expect = 2e-60 Identities = 164/537 (30%), Positives = 256/537 (47%), Gaps = 44/537 (8%) Query: 68 VAIVSAYNDMLSAHQPFERFPGLIKQALHEIGSVGQFAGGVPAMCDGVTQGEPGMELSLA 127 +AI +++ + H + L+ + + + G V + + A+ DG+ G GM SL Sbjct: 37 IAIANSFTQFVPGHVHLKDLGQLVAREIEKAGGVAKEFNTI-AVDDGIAMGHDGMLYSLP 95 Query: 128 SRDVIAMSTAIALSHNMFDAALCLGVCDKIVPGLLIGSLRFGHLPTVFVPAGPMPTGISN 187 SR++IA + ++ + DA +C+ CDKI PG+L+ ++R ++P VFV GPM G N Sbjct: 96 SRELIADAVEYMVNAHCADALVCISNCDKITPGMLMAAMRL-NIPAVFVSGGPMEAGKVN 154 Query: 188 ---KEKAA----VRQLFAEGKATREELLASEMASYHAPGTCTFYGTANTNQLLVEVMGLH 240 K KA A+ + EE E S G+C+ TAN+ L E +GL Sbjct: 155 WRGKTKAVDLIDAMVAAADPTVSDEEAAVMERGSCPTCGSCSGMFTANSMNCLTEALGLS 214 Query: 241 LPGASFVNPNTPLRDELTREAARQASRL-----TPENGNYVPMAEIVDEKAIVNSVVALL 295 LPG + R EL A R A L E+ +P I +A N++ + Sbjct: 215 LPGNGTILATHADRKELFLAAGRMAVELCRRWYQEEDATALPRG-IATFEAFENAMTLDI 273 Query: 296 ATGGSTNHTLHLLAIAQAAGIQLTWQDMSELSHVVPTLARIYPN-GQADINHFQAAGGMS 354 A GGSTN LHLLA AQ + T D+ LS VP + ++ P I AGG+ Sbjct: 274 AMGGSTNTVLHLLAAAQEGQVPFTMADIDRLSRRVPNVCKVAPAVSDVHIEDVHKAGGIF 333 Query: 355 FLIRQLLDGGLLHEDVQTV----AGPGLRRYTREPFLEDG-RLVWREGP----------- 398 ++ +L GGLL+ DV TV G L R+ + ++G +++ P Sbjct: 334 GILGELDRGGLLNRDVATVHAKTLGDALDRWDVKRTQDEGVHTMFKAAPGGIPTTIAFSQ 393 Query: 399 -------ERSLDEAILRPLDKPFSAEGGLRLMEGNLGRG--VMKVSAVAPEHQVVEAPVR 449 + D+ ++R +D FS +GGL ++ GN+ ++K + V + V P R Sbjct: 394 EKRWPELDLDRDKGVIRSVDSAFSKDGGLAVLFGNIAEKGCIVKTAGVDASNLVFAGPAR 453 Query: 450 IFHDQASLAAAFKAGELERDLVAVVRFQGPRAN-GMPELHKLTPFLGVLQDRGFKVALVT 508 +F Q + A ++ V V+R++GPR GM E+ T +L + G ALVT Sbjct: 454 VFESQDAAVEAILGDTVKAGDVVVIRYEGPRGGPGMQEMLYPTSYL-KSKGLGKACALVT 512 Query: 509 DGRMSGASGKVPAAIHVSPEAIAGGPLARLRDGDRVRVDGVNGELRVLVDDAEWQAR 565 DGR SG + + H SPEA GG + ++DGDR+ +D N ++ + + D E Q R Sbjct: 513 DGRFSGGTSGLSIG-HASPEAAQGGAIGLVQDGDRIEIDIPNRKINLALSDEELQRR 568 Lambda K H 0.319 0.135 0.397 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 888 Number of extensions: 52 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 608 Length of database: 621 Length adjustment: 37 Effective length of query: 571 Effective length of database: 584 Effective search space: 333464 Effective search space used: 333464 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory