Align Ribose import ATP-binding protein RbsA 1; EC 7.5.2.7 (characterized, see rationale)
to candidate AZOBR_RS31245 AZOBR_RS31245 ABC transporter ATP-binding protein
Query= uniprot:Q9WXX0 (520 letters) >FitnessBrowser__azobra:AZOBR_RS31245 Length = 518 Score = 370 bits (949), Expect = e-107 Identities = 209/509 (41%), Positives = 325/509 (63%), Gaps = 24/509 (4%) Query: 12 MEILKAKGIVKRFPGVVAVDNVDFEVYENEIVSLIGENGAGKSTLIKILTGVLKPDA--G 69 M IL+ KGI K FPGV A+D+V+ V E EI +LIGENGAGKSTL+K+L+GV + G Sbjct: 3 MPILEMKGITKTFPGVKALDDVNLSVREGEIHALIGENGAGKSTLMKVLSGVYPQGSFDG 62 Query: 70 EILVNGERVEFHSPVDAFKKGISVIHQELNLCDNMTVAENIFLAYEAVRGQKRTLSSRVD 129 EI G+ F D+ + GI +IHQEL L +++ EN+FL G ++ +D Sbjct: 63 EIRFRGQPQAFRGIADSERLGIIIIHQELALVPLLSITENLFL------GNEQASRGVID 116 Query: 130 ENYMYTRSKELLDLIGAKFSPDALVRNLTTAQRQMVEICKALVKEPRIIFMDEPTSSLTV 189 + R++ELL L+G P+ L+ ++ ++Q+VEI KAL KE +++ +DEPT+SL Sbjct: 117 WDAATLRARELLRLVGLHDPPETLITDIGVGKQQLVEIAKALSKEVKLLILDEPTASLNE 176 Query: 190 EETERLFEIIEMLKSRGISVVFVSHRLDEVMRISDRIVVMRDGKRIGELKKGEFDV--DT 247 +++ L E++ K+RGI+ + +SH+L+E+ +++DR+ ++RDG + L E V D Sbjct: 177 SDSDALLELLLQFKARGIASILISHKLNEIAKVADRVTILRDGTTVETLDCREAVVSQDR 236 Query: 248 IIKMMVGREVEFFPHGIETRPGEIALEVRNLK-------WKDKVKNVSFEVRKGEVLGFA 300 II+ MVGR + T PG++ EV+ + V++V+ VR+GEV+G A Sbjct: 237 IIRGMVGRALSDRYPRRTTVPGDVLFEVKGWSADHPAHPGRRVVRDVNLTVRRGEVVGIA 296 Query: 301 GLVGAGRTETMLLVFGVNQKES--GDIYVNGRKVEIKNPEDAIKMGIGLIPEDRKLQGLV 358 GL+GAGRTE + +FG + + G +++GR++++ A+ G+ EDRK GLV Sbjct: 297 GLMGAGRTEFAMSLFGRSYGRNIRGQAFLDGREIDVSTISRAMANGLAYATEDRKHLGLV 356 Query: 359 LRMTVKDNIVLPSLKKIS-RWGLVLDERKEEEISEDYVKRLSIKTPSIYQITENLSGGNQ 417 L ++ N+ L +L+ ++ RW V+D +E +++E++ +RL I+ ++Q T NLSGGNQ Sbjct: 357 LDNDIRHNVTLANLRGVAKRW--VIDHEREVQVAEEFRRRLRIRCADVFQETVNLSGGNQ 414 Query: 418 QKVVLAKWLATNADILIFDEPTRGIDVGAKAEIHRMIRELAAQGKAVIMISSELPEILNL 477 QKVVL+KWL + +LI DEPTRGIDVGAK EI+ +I +L A+G+ V++ISSE+PE+L + Sbjct: 415 QKVVLSKWLFADPQVLILDEPTRGIDVGAKYEIYTIINQLVAEGRGVVLISSEMPELLGV 474 Query: 478 SDRIVVMWEGEITAVLDNREKRVTQEEIM 506 +DRI VM GE+ A + E +QE+IM Sbjct: 475 ADRIYVMNAGEMVAEMPAAE--ASQEKIM 501 Lambda K H 0.319 0.138 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 739 Number of extensions: 40 Number of successful extensions: 10 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 518 Length adjustment: 35 Effective length of query: 485 Effective length of database: 483 Effective search space: 234255 Effective search space used: 234255 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory