Align N-succinylglutamate 5-semialdehyde dehydrogenase; Succinylglutamic semialdehyde dehydrogenase; SGSD; EC 1.2.1.71 (characterized)
to candidate GFF3587 Psest_3654 succinate-semialdehyde dehydrogenase
Query= SwissProt::Q8ZPV0 (492 letters) >lcl|FitnessBrowser__psRCH2:GFF3587 Psest_3654 succinate-semialdehyde dehydrogenase Length = 488 Score = 202 bits (513), Expect = 3e-56 Identities = 154/477 (32%), Positives = 233/477 (48%), Gaps = 33/477 (6%) Query: 2 TLWINGDWITGQ-GERRRKTNPVSAEILWQGNDANAAQVAEACQAARAAFPRWARQPFAA 60 T ++NG+W G R NP + E++ + + A +AA+AA P W Sbjct: 14 TAYLNGEWCEADSGARTEIFNPATGELIGAVPNMGRGETRRAIEAAQAAQPAWRALTAKE 73 Query: 61 RQAIVEKFAALLEAHKAELTEVIARETGKPRWEAATEVTAMINKIAISIKAYHARTGAQ- 119 R A + ++ L+ ++ +L ++ E GKP EA EV A S + A G + Sbjct: 74 RAARLRRWYELMLENQEDLARIMTAEQGKPLAEARGEVA-----YAASFLEWFAEEGKRL 128 Query: 120 -----KSELVDGAATLRHRPHGVLAVFGPYNFPGHLPNGHIVPALLAGNTLIFKPSELTP 174 + D ++ P GV A P+NFP + PAL AG ++ KP+ TP Sbjct: 129 YGDVIPAHAGDKRILVQKEPVGVTAAITPWNFPSAMITRKAGPALAAGCAMVLKPAPQTP 188 Query: 175 WTGETVIKLWERAGLPAGVLNLVQG----GRETGQALSSLDDLDGLLFTGSASTGYQLHR 230 ++ + L ERAG+PAG+L+++ RE G L + L FTGS + G +L + Sbjct: 189 FSALALAALAERAGIPAGLLSVITADAATSREVGAELCENPIVRKLSFTGSTAVGIKLMQ 248 Query: 231 QLSGQPEKILALEMGGNNPLIIEDAANIDAAVHLTLQSAFITAGQRCTCARRLLVKQGAQ 290 Q + +K L+LE+GGN P I+ D A++DAAV + S + AGQ C CA R+ V+ G Sbjct: 249 QCAPTLKK-LSLELGGNAPFIVFDDADLDAAVEGAMISKYRNAGQTCVCANRIYVQDGIY 307 Query: 291 GDAFLARLVDVAGRLQPGRWDDD---PQPFIGGLISAQAAQHVMEAWRQREALGGRTLLA 347 DAF+ +L RL+ G ++ P I A+ +H+ +A + G TLLA Sbjct: 308 -DAFVDKLSAAVARLKVGNGAEEGVTTGPLIDAAAVAKVQRHLQDALDK-----GATLLA 361 Query: 348 PRKVKE-GTSLLTPGII-ELTGVADVPDEEVFGPLLNVWRYAHFDEAIRLANNTRFGLSC 405 K G + P ++ +T V EE FGPL ++R+ DE IR AN+T FGL+ Sbjct: 362 GGKPHALGGNFFEPTLVGGVTSEMAVAREETFGPLAPLFRFRDEDEVIRQANDTEFGLAA 421 Query: 406 GLVSTDRAQFEQLLLEARAGIVNWNKPLTGAAST--APFGGVGASGNHRPSAWYAAD 460 + D ++ ++ G+V N TG ST APFGG+ ASG R + Y D Sbjct: 422 YFYARDLSRVFRVAEALEYGMVGIN---TGVISTEVAPFGGMKASGLGREGSKYGLD 475 Lambda K H 0.319 0.134 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 539 Number of extensions: 26 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 492 Length of database: 488 Length adjustment: 34 Effective length of query: 458 Effective length of database: 454 Effective search space: 207932 Effective search space used: 207932 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory