Align Glutarate-semialdehyde dehydrogenase (EC 1.2.1.20) (characterized)
to candidate GFF2584 Psest_2634 glycine betaine aldehyde dehydrogenase
Query= reanno::pseudo13_GW456_L13:PfGW456L13_495 (480 letters) >lcl|FitnessBrowser__psRCH2:GFF2584 Psest_2634 glycine betaine aldehyde dehydrogenase Length = 490 Score = 332 bits (851), Expect = 2e-95 Identities = 182/473 (38%), Positives = 281/473 (59%), Gaps = 9/473 (1%) Query: 10 RQQAFIDGAWVDADNGQTIKVNNPATGEILGTVPKMGAAETRRAIEAADKALPAWRALTA 69 RQQ +I G +VDA + +T + NPA GE+L V + GAA+ RA+E+A++ W ALT Sbjct: 6 RQQLYIHGGYVDASSNETFESINPANGEVLAQVAEAGAADLERAVESAEQGQRIWAALTG 65 Query: 70 KERATKLRRWYELIIENQDDLARLMTLEQGKPLAEAKG-EIVYAASFIEWFAEEAKRIYG 128 ERA +RR +L+ E D+LA L TL+ GKPL+E + +IV A +E++A A I G Sbjct: 66 IERARIMRRAVDLLRERNDELALLETLDTGKPLSETRSVDIVTGADVLEYYAGLAPAIEG 125 Query: 129 DVIPGHQPDKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVLKPASQTPFS 188 + IP + + ++P+GV A I WN+P + KA PALAAG M+ KP+ T S Sbjct: 126 EQIP-LRDSSFVYTRREPLGVVAGIGAWNYPIQIALWKAAPALAAGNAMIFKPSEVTSLS 184 Query: 189 AFALAELAQRAGIPAGVFSVVSGSAGDIGSELTSNPIVRKLSFTGSTEIGRQLMSECA-K 247 A LAE+ AG+P GVF+V++GS +G+ +T +P + K+SFTG G+++M+ A Sbjct: 185 ALKLAEIFSEAGLPDGVFNVLTGSGAGVGALITEHPRIAKVSFTGGVATGKKVMASAASS 244 Query: 248 DIKKVSLELGGNAPFIVFDDADLDKAVEGAIISKYRNNGQTCVCANRLYIQDGVYDAFAE 307 +K V++ELGG +P I+ +DADLD+A + A+++ + ++GQ C R+++ G+ AF Sbjct: 245 SLKDVTMELGGKSPLIICEDADLDRAADIAVMANFFSSGQVCTNGTRVFVPAGLKAAFEA 304 Query: 308 KLKVAVAKLKIGNGLEAGTTTGPLIDEKAVAKVQEHIADALSKGATVLAGGKPM------ 361 KL V ++++G+ + T GPL+ + V ++IA + GA +L GG+ + Sbjct: 305 KLLERVQRIRLGDPQQEETNFGPLVSFAHMNNVLDYIAKGKAAGARLLCGGERVTEGEYA 364 Query: 362 EGNFFEPTILTNVPNNAAVAKEETFGPLAPLFRFKDEADVIAMSNDTEFGLASYFYARDL 421 +G F PTI ++ ++ A+ EE FGP+ L ++DE +VI +NDTE+GLA+ DL Sbjct: 365 KGAFVAPTIFSDCSDDMAIVCEEIFGPVLSLLEYQDEDEVIRRANDTEYGLAAGVVTADL 424 Query: 422 GRVFRVAEALEYGMVGVNTGLISNEVAPFGGIKASGLGREGSKYGIEDYLEIK 474 R R+ LE G+ +NT S P GG K SG+GRE + Y +K Sbjct: 425 ARAHRIIHRLEAGICWINTWGESPAQMPVGGYKQSGIGRENGIASLAHYTRVK 477 Lambda K H 0.317 0.135 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 554 Number of extensions: 25 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 480 Length of database: 490 Length adjustment: 34 Effective length of query: 446 Effective length of database: 456 Effective search space: 203376 Effective search space used: 203376 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory