Align L-glutamate gamma-semialdehyde dehydrogenase (EC 1.2.1.88) (characterized)
to candidate GFF374 Psest_0375 NAD-dependent aldehyde dehydrogenases
Query= BRENDA::Q72IB9 (516 letters) >lcl|FitnessBrowser__psRCH2:GFF374 Psest_0375 NAD-dependent aldehyde dehydrogenases Length = 480 Score = 283 bits (723), Expect = 1e-80 Identities = 177/458 (38%), Positives = 258/458 (56%), Gaps = 12/458 (2%) Query: 36 RHYPLYIGGEWVDTKERMVSLNPSAPSEVVGTTAKAGKAEAEAALEAAWKAFKTWKDWPQ 95 + Y +I G+WV + + NPS S+V+G A+A A+ E A+ AA +AF W + Sbjct: 5 QRYDNFIDGQWVGSDRYQANTNPSDLSDVIGEYAQADAAQVEQAIAAARRAFPAWATFGI 64 Query: 96 EDRSRLLLKAAALMRRRKRELEATLVYEVGKNWVEASADVAEAIDFIEYYARAALRYRYP 155 + R+ L K + R+ EL L E GK EA +VA A + +Y+A LR Sbjct: 65 QARADALEKVGLEILARREELGTLLAREEGKTLPEAIGEVARAGNIFKYFAGECLRQAGE 124 Query: 156 AVEVVPYPGEDNESFYVPLGAGVVIAPWNFPVAIFTGMIMGPVAVGNTVIAKPAEDAVVV 215 ++ V PG E PLG +I PWNFP+AI I +A GN V+ KPA+ Sbjct: 125 TLQSVR-PGVGVEVTREPLGVIGLITPWNFPIAIPAWKIAPALAFGNCVVIKPADLVPGC 183 Query: 216 GAKVFEIFHEAGFPPGVVNFLPGVGEEVGAYLVEHPRTRFINFTGSLEVGLKIYEAAGRL 275 + EI AGFP GV N + G G EVG +V ++FTGS+ VG I + + Sbjct: 184 AWAIAEIISRAGFPAGVFNLVMGKGREVGEAIVNAKDVDAVSFTGSVGVGRGIAQTC--V 241 Query: 276 APGQTWFKRAYVETGGKDAIIVDETADFDLAAEGVVVSAYGFQGQKCSAASRLILTQGAY 335 A G + +E GGK+ IV + AD ++A E SA+ GQ+C+A+SR+I+T+G Y Sbjct: 242 ARGA----KVQLEMGGKNPQIVLDDADLNVAVELCTQSAFYSTGQRCTASSRIIVTEGIY 297 Query: 336 EPVLERVLKRAERLSVGPA-EENPDLGPVVSAEQERKVLSYIEIGKNEG-QLVLGGKRLE 393 + +E +++R +++ VG A E+ D+GPVVS Q + L YIEIGK EG +L GG+R++ Sbjct: 298 DRFVEAMVERIKKIKVGSALEQGVDVGPVVSEAQLEQDLRYIEIGKQEGARLACGGERVK 357 Query: 394 --GEGYFIAPTVFTEVPPKARIAQEEIFGPVLSVIRVKDFAEALEVANDTPYGLTGGVYS 451 EGYF+APT+F + P RI++EEIFGPV +V++VKD+ EAL +ANDT +GL+ G+ + Sbjct: 358 CGTEGYFLAPTLFVDSDPNMRISREEIFGPVANVVKVKDYDEALAMANDTEFGLSAGICT 417 Query: 452 RKREHLEWARREFHVGNLYFNRKITGALVGVQPFGGFK 489 ++ +R G + N G V PFGG K Sbjct: 418 TSLKYANHFKRHAQAGMVMINLPTAGVDYHV-PFGGRK 454 Lambda K H 0.319 0.137 0.403 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 588 Number of extensions: 32 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 516 Length of database: 480 Length adjustment: 34 Effective length of query: 482 Effective length of database: 446 Effective search space: 214972 Effective search space used: 214972 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory