Align succinate-semialdehyde dehydrogenase (NADP+) [EC: 1.2.1.16] (characterized)
to candidate GFF3587 Psest_3654 succinate-semialdehyde dehydrogenase
Query= reanno::MR1:200453 (482 letters) >lcl|FitnessBrowser__psRCH2:GFF3587 Psest_3654 succinate-semialdehyde dehydrogenase Length = 488 Score = 737 bits (1902), Expect = 0.0 Identities = 361/481 (75%), Positives = 413/481 (85%), Gaps = 3/481 (0%) Query: 3 LNDPSLLRQQCYINGQWCDANSKETVAITNPATGAVIACVPVMGQAETQAAIAAAEAALP 62 L P LLRQ Y+NG+WC+A+S I NPATG +I VP MG+ ET+ AI AA+AA P Sbjct: 5 LGQPDLLRQTAYLNGEWCEADSGARTEIFNPATGELIGAVPNMGRGETRRAIEAAQAAQP 64 Query: 63 AWRALTAKERGAKLRRWFELLNENSDDLALLMTSEQGKPLTEAKGEVTYAASFIEWFAEE 122 AWRALTAKER A+LRRW+EL+ EN +DLA +MT+EQGKPL EA+GEV YAASF+EWFAEE Sbjct: 65 AWRALTAKERAARLRRWYELMLENQEDLARIMTAEQGKPLAEARGEVAYAASFLEWFAEE 124 Query: 123 AKRIYGDTIPGHQGDKRIMVIKQPVGVTAAITPWNFPAAMITRKAAPALAAGCTMVVKPA 182 KR+YGD IP H GDKRI+V K+PVGVTAAITPWNFP+AMITRKA PALAAGC MV+KPA Sbjct: 125 GKRLYGDVIPAHAGDKRILVQKEPVGVTAAITPWNFPSAMITRKAGPALAAGCAMVLKPA 184 Query: 183 PQTPFTALALAVLAERAGIPAGVFSVITGDAIA---IGNEMCTNPIVRKLSFTGSTNVGI 239 PQTPF+ALALA LAERAGIPAG+ SVIT DA +G E+C NPIVRKLSFTGST VGI Sbjct: 185 PQTPFSALALAALAERAGIPAGLLSVITADAATSREVGAELCENPIVRKLSFTGSTAVGI 244 Query: 240 KLMAQCAPTLKKLSLELGGNAPFIVFDDANIDAAVEGAMIAKYRNAGQTCVCANRIYVQA 299 KLM QCAPTLKKLSLELGGNAPFIVFDDA++DAAVEGAMI+KYRNAGQTCVCANRIYVQ Sbjct: 245 KLMQQCAPTLKKLSLELGGNAPFIVFDDADLDAAVEGAMISKYRNAGQTCVCANRIYVQD 304 Query: 300 GVYDEFAEKLSMAVAKLKVGEGIIAGVTTGPLINAAAVEKVQSHLEDAIKKGATVLAGGK 359 G+YD F +KLS AVA+LKVG G GVTTGPLI+AAAV KVQ HL+DA+ KGAT+LAGGK Sbjct: 305 GIYDAFVDKLSAAVARLKVGNGAEEGVTTGPLIDAAAVAKVQRHLQDALDKGATLLAGGK 364 Query: 360 VHELGGNFFEPTVLTNADKSMRVAREETFGPLAPLFKFNDVDDVIKQANDTEFGLAAYFY 419 H LGGNFFEPT++ M VAREETFGPLAPLF+F D D+VI+QANDTEFGLAAYFY Sbjct: 365 PHALGGNFFEPTLVGGVTSEMAVAREETFGPLAPLFRFRDEDEVIRQANDTEFGLAAYFY 424 Query: 420 GRDISLVWKVAESLEYGMVGVNTGLISTEVAPFGGMKSSGLGREGSKYGIEEYLEIKYIC 479 RD+S V++VAE+LEYGMVG+NTG+ISTEVAPFGGMK+SGLGREGSKYG++EY+EIKY+C Sbjct: 425 ARDLSRVFRVAEALEYGMVGINTGVISTEVAPFGGMKASGLGREGSKYGLDEYVEIKYLC 484 Query: 480 M 480 + Sbjct: 485 L 485 Lambda K H 0.318 0.133 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 757 Number of extensions: 17 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 482 Length of database: 488 Length adjustment: 34 Effective length of query: 448 Effective length of database: 454 Effective search space: 203392 Effective search space used: 203392 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory