GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gcdG in Pseudomonas stutzeri RCH2

Align succinyl-CoA-glutarate CoA-transferase (EC 2.8.3.13) (characterized)
to candidate GFF3760 Psest_3829 Predicted acyl-CoA transferases/carnitine dehydratase

Query= reanno::pseudo5_N2C3_1:AO356_10845
         (406 letters)



>FitnessBrowser__psRCH2:GFF3760
          Length = 407

 Score =  672 bits (1735), Expect = 0.0
 Identities = 322/405 (79%), Positives = 363/405 (89%)

Query: 2   GALSHLRVLDLSRVLAGPWAGQILADLGADVIKVERPGNGDDTRAWGPPFLKDARGENTT 61
           GALSH+RVLDLSRVLAGPW GQIL DLGA+VIKVERPG GDDTR WGPP+LKD  GENT+
Sbjct: 3   GALSHIRVLDLSRVLAGPWCGQILGDLGAEVIKVERPGTGDDTRHWGPPYLKDQHGENTS 62

Query: 62  EAAYYLSANRNKQSVTIDFTRPEGQRLVRELAAKSDILIENFKVGGLAAYGLDYDSLKAI 121
           EAAYYL+ANRNKQS+T+DFTRPEGQR++REL A+ D+L+ENFKVGGLAAYGLDY+SLKA+
Sbjct: 63  EAAYYLTANRNKQSLTVDFTRPEGQRIIRELVAQCDVLLENFKVGGLAAYGLDYESLKAL 122

Query: 122 NPQLIYCSITGFGQTGPYAKRAGYDFMIQGLGGLMSLTGRPEGDEGAGPVKVGVALTDIL 181
           NP+LIYCSITGFGQ GPYA RAGYDFMIQGLGGLMSLTGR + +EGAGPVKVGVALTDIL
Sbjct: 123 NPRLIYCSITGFGQDGPYATRAGYDFMIQGLGGLMSLTGRSDAEEGAGPVKVGVALTDIL 182

Query: 182 TGLYSTAAILAALAHRDHVGGGQHIDMALLDVQVACLANQAMNYLTTGNAPKRLGNAHPN 241
           TGLY+T  +LAALAHR+  G GQHID ALLDVQVACL NQA+NYL TG APKR+GNAHPN
Sbjct: 183 TGLYATVGVLAALAHRERSGEGQHIDTALLDVQVACLGNQALNYLATGVAPKRMGNAHPN 242

Query: 242 IVPYQDFPTADGDFILTVGNDGQFRKFAEVAGQPQWADDPRFATNKVRVANRAVLIPLIR 301
           IVPYQDFPTADGD ILTVGNDGQFRKF EVAG+P+WA DPRFATN+ RVA+RA LIPLIR
Sbjct: 243 IVPYQDFPTADGDIILTVGNDGQFRKFCEVAGRPEWATDPRFATNRARVAHRAELIPLIR 302

Query: 302 QATVFKTTAEWVTQLEQAGVPCGPINDLAQVFADPQVQARGLAMELPHLLAGKVPQVASP 361
           Q TVF+TTAEWV+ LEQAGVPCGPINDLAQVFADPQVQ RGL +E+PH LAG+VPQVASP
Sbjct: 303 QVTVFRTTAEWVSALEQAGVPCGPINDLAQVFADPQVQHRGLNVEMPHPLAGRVPQVASP 362

Query: 362 IRLSETPVEYRNAPPLLGEHTLEVLQRVLGLDEAAVMAFREAGVL 406
           +RLS +PV YRN PPLLGEH+  +LQR+LG+++  +   R AGV+
Sbjct: 363 LRLSASPVAYRNPPPLLGEHSEALLQRLLGMNDEQIAGLRAAGVI 407


Lambda     K      H
   0.319    0.137    0.408 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 682
Number of extensions: 16
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 406
Length of database: 407
Length adjustment: 31
Effective length of query: 375
Effective length of database: 376
Effective search space:   141000
Effective search space used:   141000
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory