Align aminobutyraldehyde dehydrogenase (EC 1.2.1.19) (characterized)
to candidate GFF882 Psest_0905 NAD-dependent aldehyde dehydrogenases
Query= BRENDA::A0A0E3T3B5 (503 letters) >lcl|FitnessBrowser__psRCH2:GFF882 Psest_0905 NAD-dependent aldehyde dehydrogenases Length = 499 Score = 370 bits (950), Expect = e-107 Identities = 210/491 (42%), Positives = 286/491 (58%), Gaps = 13/491 (2%) Query: 10 LFIDGEWREPVLKKRIPIINPATEQIIGDIPAATAEDVEIAVEAARKALARNKGRDWALA 69 LFID +W + + IINPA +I+ +IP ATA DV+ AV+AA++A W Sbjct: 19 LFIDNQWVSDEYGETLDIINPANGKILTNIPNATAADVDRAVQAAQRAFMT-----WRTT 73 Query: 70 PGAVRAKYLRAIAAKIAERKSEIAKLEAIDCGKPLDEA-AWDIDDVSGCFEYYADLAEGL 128 A RA L IA + A LE +D GKP+ E+ + DI F Y+A G+ Sbjct: 74 SPAERANALLKIADLLEADADRFAVLETLDVGKPIRESRSVDIPLAIDHFRYFA----GV 129 Query: 129 DAQQKTPISLPMEQFKSHVLKEPIGVVGLITPWNYPLLMATWKVAPALAAGCAAILKPSE 188 Q + EQ S L EP+GVVG + PWN+PLLMA WK+APA+AAG ++KPSE Sbjct: 130 IRSQSDEAVMLDEQTLSIALSEPLGVVGQVIPWNFPLLMAAWKIAPAIAAGNTVVIKPSE 189 Query: 189 LASVTCLELADVCREVGLPPGVLNILTGLGHEAGAPLASHPHVDKIAFTGSTMTGSKIMT 248 L VT LELA + +V LP GV+NI+TGLG G L HP + K+AFTGST G + Sbjct: 190 LTPVTILELAKIFAKV-LPAGVVNIVTGLGTTVGQALLDHPDLRKLAFTGSTRVGELVAN 248 Query: 249 AAAQLVKPVSLELGGKSPIVVFDDVDIDKAAEWTAFGIFWTNGQICSATSRLIIHENIAA 308 AAA+ + P +LELGGKS +VF D + DKA E I W GQ+C + +RL +HE+I Sbjct: 249 AAAKKIIPATLELGGKSANIVFPDANWDKAVEGAVLAILWNQGQVCESGARLFVHESIYE 308 Query: 309 KFLDRLVQWCKNIKIADPLEEGCRLGPVVSGGQYEKILKFIATAKSEGARVLSGGAR--P 366 +FL L + +++ DPL +G VS Q E+IL ++ AK EGA VL GG R Sbjct: 309 RFLAELKHKFEAVRVGDPLNPDTMMGAQVSKSQMERILGYVDIAKQEGAEVLIGGGRLTG 368 Query: 367 EHLKKGFFIEPTIITDVTTSMQIWREEVFGPVLCVKTFSSEDEALELANDSHYGLGAAVI 426 + GFFI+PTI+ V M++ EE+FGPVLCV F E E + +ANDS YGL AV Sbjct: 369 ANYDAGFFIQPTILVGVRNDMRVAYEEIFGPVLCVIPFKDEAEVIAMANDSEYGLAGAVW 428 Query: 427 SKDLERCERVSKALQAGIVWINCSQPCFCQAPWGGNKRSGFGRELGKWGLDNYLTVKQVT 486 ++D+ R RV++A++ G +W+N AP+GG K+SG GRE K L+ Y K + Sbjct: 429 TQDINRALRVARAVETGRMWVNTYHEIPAHAPFGGYKKSGLGRETHKSMLEAYSQKKNIY 488 Query: 487 EYVSDDPWGWY 497 +++ P G + Sbjct: 489 VSLNEAPLGLF 499 Lambda K H 0.319 0.136 0.419 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 604 Number of extensions: 25 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 503 Length of database: 499 Length adjustment: 34 Effective length of query: 469 Effective length of database: 465 Effective search space: 218085 Effective search space used: 218085 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory