Align TRAP-type large permease component (characterized, see rationale)
to candidate GFF360 Psest_0361 TRAP transporter, DctM subunit
Query= uniprot:Q930R2 (425 letters) >FitnessBrowser__psRCH2:GFF360 Length = 426 Score = 298 bits (763), Expect = 2e-85 Identities = 165/418 (39%), Positives = 253/418 (60%), Gaps = 3/418 (0%) Query: 1 MTLVVFIVSLLGAMAIGVPVAFSLMFCGVVLMWYMGMFNTQIIAQNMIAGADTFTLLAIP 60 M VV + S + + + VPVA+SL +V W++ + ++ Q + G + F+LLAIP Sbjct: 1 MDAVVLLGSFIVLILLRVPVAYSLGLATLVGAWWIDIPLHAVMIQ-IAGGVNKFSLLAIP 59 Query: 61 FFILAGELMNAGGLSRRIIDFAIACVGHIRGGLGIVAIMAAVIMASISGSAAADTAALAA 120 FF+LAG +M GG++RR++ FA VG +RGGL +V I A+ +ISGS+ ADTA++ + Sbjct: 60 FFVLAGAIMAEGGMARRLVAFAGVLVGFVRGGLSLVNITASTFFGAISGSSLADTASVGS 119 Query: 121 ILIPMMAKAGYNVPRSAGLIAAGGVIAPVIPPSMAFIVFGVAAN--VSITQLFMAGIVPG 178 +LIP M K GY S + +G V A + PPS +++ +AA VSI LF+AGI PG Sbjct: 120 VLIPEMEKKGYPREFSTAVTISGSVQALLTPPSHNSVIYSLAAGGTVSIAALFVAGIGPG 179 Query: 179 LIMGIALVATWLLVVRKDDIQPLPRTPMKERVGATGRALWALGMPVIILGGIKAGVVTPT 238 L++ + LL RK + P+++ + ALW L VIILGGI +GV T T Sbjct: 180 LLLSATMATLCLLFARKRNYPKGEVVPLRQALKICVEALWGLMTMVIILGGILSGVFTAT 239 Query: 239 EAAVVAAVYALFVGMVIYRELKPRDLPGVILQAAKTTAVIMFLVCAALVSSWLITAANIP 298 E+A VA V+A FV M IYR+ K +LP ++ + +T +++M L+ A +++T IP Sbjct: 240 ESAAVAVVWAFFVTMFIYRDYKWSELPRMLHRTVRTLSIVMILIAFAASFGYIMTLMQIP 299 Query: 299 SEITGFISPLIDRPTLLMFVIMLVVLVVGTALDLTPTILILTPVLMPIIKQAGIDPVYFG 358 S+IT L D +++ I ++LV+GT +D+ P ILILTP+L+P++ G+DPV+FG Sbjct: 300 SKITTAFLALSDNRYVILMCINFMLLVLGTLMDMAPLILILTPILLPVVVSFGVDPVHFG 359 Query: 359 VLFIMNTCIGLLTPPVGVVLNVVSGVGRVPLGKVIVGVTPFLVAQILVLFLLVLFPDI 416 ++ ++N IGL+TPPVG VL V + +G+V + + + PF A VL + P I Sbjct: 360 MIMLVNLGIGLITPPVGAVLFVGAAIGKVTIENTVKALLPFYAALFAVLMAVTYIPMI 417 Score = 26.6 bits (57), Expect = 0.002 Identities = 19/68 (27%), Positives = 32/68 (47%), Gaps = 6/68 (8%) Query: 224 VIILGGIKAGVVTPTEAAVVAAVYALFVGMVIYRELKPRDLPGVILQAAKTTAVIMFLVC 283 +I+L + G++TP AV LFVG I + + ++ A AV+M + Sbjct: 360 MIMLVNLGIGLITPPVGAV------LFVGAAIGKVTIENTVKALLPFYAALFAVLMAVTY 413 Query: 284 AALVSSWL 291 ++S WL Sbjct: 414 IPMISLWL 421 Lambda K H 0.331 0.145 0.430 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 448 Number of extensions: 22 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 425 Length of database: 426 Length adjustment: 32 Effective length of query: 393 Effective length of database: 394 Effective search space: 154842 Effective search space used: 154842 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.2 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.9 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory