Align phosphogluconate dehydratase (EC 4.2.1.12) (characterized)
to candidate GFF233 Psest_0234 dihydroxy-acid dehydratase
Query= BRENDA::Q1PAG1 (608 letters) >lcl|FitnessBrowser__psRCH2:GFF233 Psest_0234 dihydroxy-acid dehydratase Length = 612 Score = 214 bits (545), Expect = 9e-60 Identities = 166/534 (31%), Positives = 262/534 (49%), Gaps = 40/534 (7%) Query: 68 VAIVSSYNDMLSAHQPYEHFPEQIKKALREMGSVGQFAGGTPAMCDGVTQGEAGMELSLP 127 +AI +S+ + H + + + + + + G V + T A+ DG+ G GM SLP Sbjct: 37 IAIANSFTQFVPGHVHLKDLGQLVAREIEKHGGVAK-EFNTIAVDDGIAMGHDGMLYSLP 95 Query: 128 SREVIALSTAVALSHNMFDAALMLGICDKIVPGLMMGALRFGHLPTIFVPGGPMPSGIS- 186 SRE+IA S ++ + DA + + CDKI PG++M ALR ++P +FV GGPM +G + Sbjct: 96 SREIIADSVEYMVNAHCADAIVCISNCDKITPGMLMAALRL-NIPVVFVSGGPMEAGKTK 154 Query: 187 ----NKEKADVRQRYAEGKATREELLESEMKSYHSPGTCTFYGTANTNQLLMEVMGLHLP 242 + D A+ A+ E++ E E + + G+C+ TAN+ L E +GL LP Sbjct: 155 LASHGLDLVDAMVIAADESASDEKVAEYERSACPTCGSCSGMFTANSMNCLAEALGLALP 214 Query: 243 GASFVNPYTPLRDALTHEAAQQVTRLTKQ---SGNFTPI-GEIVDERSLVNSIVALHATG 298 G R+ L A + V L K+ G+ + + I R+ N++ A G Sbjct: 215 GNGSTLATHSDREQLFLRAGRTVVELCKRYYGEGDESVLPRNIASRRAFENAMTLDIAMG 274 Query: 299 GSTNHTLHMPAIAQAAGIQLTWQDMADLSEVVPTLSHVYPN-GKADINHFQAAGGMAFLI 357 GSTN LH+ A AQ A + + + LS VP L V PN K + AGG+ ++ Sbjct: 275 GSTNTILHLLAAAQEAEVDFDLRAIDALSRKVPQLCKVAPNIQKYHMEDVHRAGGIFSIL 334 Query: 358 RELLEAGLLHEDVNTVAGR----GLSRYTQEPFLDNG-KLVWRDGPI------------- 399 EL GLLH DV TV R G++++ D ++ GP Sbjct: 335 GELARGGLLHTDVPTVHSRTLAEGIAQWDITQTQDEAVHTFFKAGPAGIPTQTAFSQSTR 394 Query: 400 -ESLDEN----ILRPVARAFSPEGGLRVMEGNLGRG--VMKVSAVALQHQIVEAPAVVFQ 452 +SLD++ +R V A+S EGGL V+ GN+ V+K + V + E A +++ Sbjct: 395 WDSLDDDRENGCIRSVEHAYSQEGGLAVLYGNIALDGCVVKTAGVDESIHVFEGTAKIYE 454 Query: 453 DQQDLADAFKAGELEKDFVAVMRFQGPRSN-GMPELHKMTPFLGVLQDRGFKVALVTDGR 511 Q A E++ + ++R++GP+ GM E+ T +L + G AL+TDGR Sbjct: 455 SQDSAVKGILADEVKAGDIVIIRYEGPKGGPGMQEMLYPTSYL-KSKGLGKDCALLTDGR 513 Query: 512 MSGASGKIPAAIHVSPEAQVGGALARVRDGDIIRVDGVKGTLELKVDADEFAAR 565 SG + + H SPEA GGA+ VRDGD + +D +++L+V +E + R Sbjct: 514 FSGGTSGLSIG-HASPEAAAGGAIGLVRDGDKVLIDIPNRSIQLQVSDEELSHR 566 Lambda K H 0.318 0.134 0.386 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 871 Number of extensions: 58 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 608 Length of database: 612 Length adjustment: 37 Effective length of query: 571 Effective length of database: 575 Effective search space: 328325 Effective search space used: 328325 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory