Align aspartate ammonia-lyase (EC 4.3.1.1) (characterized)
to candidate GFF4001 Psest_4074 Aspartate ammonia-lyase
Query= BRENDA::Q9HTD7 (474 letters) >FitnessBrowser__psRCH2:GFF4001 Length = 474 Score = 803 bits (2073), Expect = 0.0 Identities = 407/472 (86%), Positives = 436/472 (92%) Query: 1 MSPVASSRIEKDLLGTLEVPADAYYGIQTLRAVNNFRLSGVPLSHYPKLVVALAMVKQAA 60 MS VASSR+EKDLLGTL VP+DAYYGIQTLRA++NFRLSGVPLSHYPKL+VALAMVKQAA Sbjct: 1 MSEVASSRVEKDLLGTLPVPSDAYYGIQTLRALHNFRLSGVPLSHYPKLIVALAMVKQAA 60 Query: 61 ADANRQLGHLPEDKHAAISEACARLIRGDFHEQFVVDMIQGGAGTSTNMNANEVIANIAL 120 ADANR+LG+LPE KH AIS+ CARLIRG+FHEQFVVDMIQGGAGTSTNMNANEVIAN+ L Sbjct: 61 ADANRELGYLPETKHVAISQGCARLIRGEFHEQFVVDMIQGGAGTSTNMNANEVIANLGL 120 Query: 121 EAMGHTKGEYKYLHPNNDVNMAQSTNDAYPTAIRLGLLLGHDTLLASLDSLIQAFAAKGV 180 EAMGH KGEY+YLHPNNDVNMAQSTNDAYPTAIRLGLLLGHDTLLASL+SL Q+ KG Sbjct: 121 EAMGHAKGEYQYLHPNNDVNMAQSTNDAYPTAIRLGLLLGHDTLLASLESLCQSLTGKGH 180 Query: 181 EFAGVLKMGRTQLQDAVPMTLGQEFHAFATTLGEDLDRLRRLAPELLTEVNLGGTAIGTG 240 FA VLKMGRTQLQDAVPMTLGQEFHAFATTLGEDL LR AP+LL EVNLGGTAIGTG Sbjct: 181 AFAHVLKMGRTQLQDAVPMTLGQEFHAFATTLGEDLQHLRGFAPQLLLEVNLGGTAIGTG 240 Query: 241 INADPGYQKLAVERLAAISGQPLKPAADLIEATSDMGAFVLFSGMLKRTAVKLSKICNDL 300 INADP YQ +AV+RLA ISGQPL+ AADLIEATSDMG+FVLFSGMLKR AVKLSKICNDL Sbjct: 241 INADPRYQAIAVQRLAQISGQPLRQAADLIEATSDMGSFVLFSGMLKRLAVKLSKICNDL 300 Query: 301 RLLSSGPRTGINEINLPPRQPGSSIMPGKVNPVIPEAVNQVAFEVIGNDLALTLAAEGGQ 360 RLLSSGPRTG NEINLPPRQPGSSIMPGKVNPVIPEAVNQVAFEVIGNDLALT+AAEGGQ Sbjct: 301 RLLSSGPRTGFNEINLPPRQPGSSIMPGKVNPVIPEAVNQVAFEVIGNDLALTMAAEGGQ 360 Query: 361 LQLNVMEPLIAYKIFDSIRLLQRAMDMLREHCITGITANVERCHELVEHSIGLVTALNPY 420 LQLNVMEPLIAYK+FDSIRLLQRAMDMLREHCI GITAN +RC EL+E SIGL+TALNPY Sbjct: 361 LQLNVMEPLIAYKLFDSIRLLQRAMDMLREHCIEGITANEDRCRELMESSIGLITALNPY 420 Query: 421 IGYENSTRIAKTALESGRGVLELVREEKLLDEATLADILLPENMIAPRLIPL 472 IGY+NSTR+A+ AL GR VLELVREE+LLD+A LA+IL PENMIAPRL PL Sbjct: 421 IGYDNSTRLAREALLGGRSVLELVREERLLDDAMLAEILRPENMIAPRLAPL 472 Lambda K H 0.318 0.135 0.380 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 788 Number of extensions: 15 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 474 Length of database: 474 Length adjustment: 33 Effective length of query: 441 Effective length of database: 441 Effective search space: 194481 Effective search space used: 194481 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory