Align glycerol-3-phosphate dehydrogenase; EC 1.1.5.3 (characterized)
to candidate GFF1416 Psest_1453 Glycerol-3-phosphate dehydrogenase
Query= CharProtDB::CH_091834 (512 letters) >lcl|FitnessBrowser__psRCH2:GFF1416 Psest_1453 Glycerol-3-phosphate dehydrogenase Length = 514 Score = 733 bits (1891), Expect = 0.0 Identities = 363/502 (72%), Positives = 405/502 (80%) Query: 5 HTPSAPLAEVYDVAVVGGGINGVGIAADAAGRGLSVFLCEQHDLAQHTSSASSKLIHGGL 64 H APLAEVYD+AVVGGGING GIAADAAGRGLSVFLCEQ DLA+HTSSASSKL+HGGL Sbjct: 3 HPLLAPLAEVYDLAVVGGGINGAGIAADAAGRGLSVFLCEQGDLAEHTSSASSKLVHGGL 62 Query: 65 RYLEHYEFRLVREALAEREVLLAKAPHIVKPLRFVLPHRPHLRPAWMIRAGLFLYDHLGK 124 RYLEHYE RLVREALAEREVLLAKAPHIV PLRFVLP+RPHLRP+WMIR GLFLYDHLGK Sbjct: 63 RYLEHYELRLVREALAEREVLLAKAPHIVTPLRFVLPYRPHLRPSWMIRTGLFLYDHLGK 122 Query: 125 REKLPASRGLRFTGSSPLKAEIRRGFEYSDCAVDDARLVVLNAISAREHGAHVHTRTRCV 184 REKL SR LRF SPLK EI GFEY+DC VDDARLVVLNA++ARE GAH+H RTRCV Sbjct: 123 REKLGGSRSLRFGADSPLKDEITHGFEYADCWVDDARLVVLNAMAARELGAHIHPRTRCV 182 Query: 185 SARRSKGLWHLHLERSDGSLYSIRARALVNAAGPWVARFIQDDLKQKSPYGIRLIQGSHI 244 SAR SK LWHLHLER DGS +SIRARALVNA GPWVA FI++ L+Q SP+G+RLIQGSHI Sbjct: 183 SARSSKALWHLHLERQDGSRFSIRARALVNATGPWVASFIEEQLRQTSPHGMRLIQGSHI 242 Query: 245 IVPKLYEGEHAYILQNEDRRIVFAIPYLDRFTMIGTTDREYQGDPAKVAISEEETAYLLQ 304 +VPKLYEG+HAYILQNEDRRIVF PYL +F++IGTTD EY GDP +V I++ E YLL Sbjct: 243 VVPKLYEGDHAYILQNEDRRIVFITPYLGQFSLIGTTDHEYHGDPTQVRITDAEIDYLLA 302 Query: 305 VVNAHFKQQLAAADILHSFAGVRPLCDDESDEPSAITRDYTLSLSAGNGEPPLLSVFGGK 364 +VNAHFK QL+ ADI +S+AGVRPLCDDESD+PSAITRDYTL+LS GE PLLSVFGGK Sbjct: 303 IVNAHFKHQLSRADIRYSYAGVRPLCDDESDQPSAITRDYTLTLSDSAGEGPLLSVFGGK 362 Query: 365 LTTYRKLAESALTQLQPFFANLGPAWTAKAPLPGGEQMQSVEALTEQLANRYAWLDRELA 424 LTTYRKLAE+AL QL P F + WT A LPGGE + AL L Y WL +A Sbjct: 363 LTTYRKLAEAALAQLAPLFPEMKRPWTHDAALPGGEHLDEPSALAHALCASYPWLPGPIA 422 Query: 425 LRWARTYGTRVWRLLDGVNGEADLGEHLGGGLYAREVDYLCKHEWAQDAEDILWRRSKLG 484 RWARTYG+R W LL G + DLGE G GL+AREVDYL EWAQ AEDILWRR+KLG Sbjct: 423 RRWARTYGSRSWLLLKGTDSLQDLGECFGAGLHAREVDYLMVEEWAQTAEDILWRRTKLG 482 Query: 485 LFLSPSQQVRLGQYLQSEHPHR 506 LF+ P++ + +YL S R Sbjct: 483 LFMQPAEVALVQRYLDSRTAER 504 Lambda K H 0.321 0.136 0.415 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 938 Number of extensions: 40 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 512 Length of database: 514 Length adjustment: 35 Effective length of query: 477 Effective length of database: 479 Effective search space: 228483 Effective search space used: 228483 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory