Align glycerol-3-phosphate dehydrogenase; EC 1.1.5.3 (characterized)
to candidate GFF2721 Psest_2775 Glycerol-3-phosphate dehydrogenase
Query= CharProtDB::CH_091834 (512 letters) >lcl|FitnessBrowser__psRCH2:GFF2721 Psest_2775 Glycerol-3-phosphate dehydrogenase Length = 511 Score = 743 bits (1917), Expect = 0.0 Identities = 364/495 (73%), Positives = 423/495 (85%), Gaps = 1/495 (0%) Query: 10 PLAEVYDVAVVGGGINGVGIAADAAGRGLSVFLCEQHDLAQHTSSASSKLIHGGLRYLEH 69 P++E+YDVAV+GGGINGVGIAADAAGRGLSVFLCE+ DLA HTSSASSKLIHGGLRYLEH Sbjct: 7 PVSELYDVAVIGGGINGVGIAADAAGRGLSVFLCERDDLASHTSSASSKLIHGGLRYLEH 66 Query: 70 YEFRLVREALAEREVLLAKAPHIVKPLRFVLPHRPHLRPAWMIRAGLFLYDHLGKREKLP 129 YEFRLVREALAERE+LLAKAPHIVKP+RFVLPHRPHLRPAWMIRAGLFLYD+LG R+KLP Sbjct: 67 YEFRLVREALAEREMLLAKAPHIVKPMRFVLPHRPHLRPAWMIRAGLFLYDNLGMRKKLP 126 Query: 130 ASRGLRFTGSSPLKAEIRRGFEYSDCAVDDARLVVLNAISAREHGAHVHTRTRCVSARRS 189 ASRGLRF SPLK I RGFEYSDC VDDARLVVLNA++ARE GAH+HTRT+C+SA+R+ Sbjct: 127 ASRGLRFGSESPLKPVITRGFEYSDCWVDDARLVVLNAMAAREKGAHIHTRTQCLSAKRA 186 Query: 190 KGLWHLHLERSDGSLYSIRARALVNAAGPWVARFIQDDLKQKSPYGIRLIQGSHIIVPKL 249 G+WH+ L+R DGS +S+RA+ALVNAAGPWVA+FI ++L+Q+SPYGIRLIQGSHIIVPKL Sbjct: 187 GGIWHVELQREDGSRFSLRAKALVNAAGPWVAQFIGENLQQRSPYGIRLIQGSHIIVPKL 246 Query: 250 YEGEHAYILQNEDRRIVFAIPYLDRFTMIGTTDREYQGDPAKVAISEEETAYLLQVVNAH 309 YEGE AYI+QNEDRRIVFAIPYLDR+TMIGTTDREY+GDPAKV+ISEEE AY+L V N H Sbjct: 247 YEGEQAYIMQNEDRRIVFAIPYLDRYTMIGTTDREYRGDPAKVSISEEEIAYVLGVANTH 306 Query: 310 FKQQLAAADILHSFAGVRPLCDDESDEPSAITRDYTLSLSAGNGEPPLLSVFGGKLTTYR 369 F++QL DI+H+FAGVRPLCDDESD PSA+TRDYTLSL+A + PLLSVFGGKLTTYR Sbjct: 307 FRKQLEPRDIVHTFAGVRPLCDDESDNPSAVTRDYTLSLAAEEKQAPLLSVFGGKLTTYR 366 Query: 370 KLAESALTQLQPFFANLGPAWTAKAPLPGGEQMQSVEALTEQLANRYAWLDRELALRWAR 429 KLAESA+ QL+PFF +G +WTA+A LPGGE M + +ALTE+L + L LA RWA Sbjct: 367 KLAESAMAQLKPFFPAMGGSWTAQAALPGGEDMSTADALTEELVAKVQGLKLPLAKRWAT 426 Query: 430 TYGTRVWRLLDGVNGEADLGEHLGGGLYAREVDYLCKHEWAQDAEDILWRRSKLGLFLSP 489 YG RVWR+L + LGE LG LYA+EV+YL + EWA +DILWRR+KLGL S Sbjct: 427 LYGNRVWRMLGEAHSLDALGEDLGQQLYAQEVEYLRREEWATQVDDILWRRTKLGLAFSE 486 Query: 490 SQQVRLGQYLQSEHP 504 ++ RL +YL +E P Sbjct: 487 PEKARLARYL-AERP 500 Lambda K H 0.321 0.136 0.415 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 895 Number of extensions: 22 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 512 Length of database: 511 Length adjustment: 35 Effective length of query: 477 Effective length of database: 476 Effective search space: 227052 Effective search space used: 227052 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory