Align Alpha-glycerophosphate oxidase; Glycerol-3-phosphate oxidase; EC 1.1.3.21 (characterized)
to candidate GFF1416 Psest_1453 Glycerol-3-phosphate dehydrogenase
Query= SwissProt::O86963 (609 letters) >lcl|FitnessBrowser__psRCH2:GFF1416 Psest_1453 Glycerol-3-phosphate dehydrogenase Length = 514 Score = 167 bits (424), Expect = 8e-46 Identities = 165/552 (29%), Positives = 241/552 (43%), Gaps = 91/552 (16%) Query: 20 YDVLIIGGGITGAGVAVQTAAAGMKTVLLEMQDFAEGTSSRSTKLVHGGIRYLKTFDVEV 79 YD+ ++GGGI GAG+A A G+ L E D AE TSS S+KLVHGG+RYL+ +++ + Sbjct: 13 YDLAVVGGGINGAGIAADAAGRGLSVFLCEQGDLAEHTSSASSKLVHGGLRYLEHYELRL 72 Query: 80 VADTVRERAIVQQIAPHIPKPDPMLLPIYDEPGATFSLFSVKVAMDLYDRLANVTGSKYE 139 V + + ER ++ APHI P +LP + + ++ + LYD L K E Sbjct: 73 VREALAEREVLLAKAPHIVTPLRFVLPYRPHLRPS---WMIRTGLFLYDHL-----GKRE 124 Query: 140 NYLLTKEEVLAREPQLQAENLVGGGVYLDFRNNDARLVIENIKRAQADGAAMISKAKVVG 199 ++ + L+ E + G Y D +DARLV+ N A+ GA + + + V Sbjct: 125 KLGGSRSLRFGADSPLKDE-ITHGFEYADCWVDDARLVVLNAMAARELGAHIHPRTRCVS 183 Query: 200 ILHDEQGIINGVEVEDQLTNERFEVHAKVVINTTGPW--SDIVRQLDKNDELPPQMRPTK 257 + +E +D RF + A+ ++N TGPW S I QL + P MR + Sbjct: 184 ARSSKALWHLHLERQD---GSRFSIRARALVNATGPWVASFIEEQLRQTS--PHGMRLIQ 238 Query: 258 GVHLVVDREKLKVPQPTYFDTGKNDGRMVFVVPRENK-TYFGTTDTDYTGDFAHPTVTQE 316 G H+VV KL Y D R+VF+ P + + GTTD +Y GD +T Sbjct: 239 GSHIVV--PKLYEGDHAYI-LQNEDRRIVFITPYLGQFSLIGTTDHEYHGDPTQVRITDA 295 Query: 317 DVDYLLTIVNERFPHAQITLDDIEASWAGLRPLITNNGGSDYNGGGKGKLSDESFEQIVE 376 ++DYLL IVN F H Q++ DI S+AG+RPL DES + Sbjct: 296 EIDYLLAIVNAHFKH-QLSRADIRYSYAGVRPL----------------CDDESDQ---- 334 Query: 377 SVKEYLADERQRPVVEKAVKQAQERVEASKVDPSQVSRGSSLERSKDG----LLTLAGGK 432 PS ++R +L S LL++ GGK Sbjct: 335 --------------------------------PSAITRDYTLTLSDSAGEGPLLSVFGGK 362 Query: 433 ITDYRLMAEGAVKRINELLQESGASFELVDSTTYPVSGGE-LDAANVEEELAKLADQAQT 491 +T YR +AE A+ ++ L E + + + GGE LD E A A Sbjct: 363 LTTYRKLAEAALAQLAPLFPEMKRPW----THDAALPGGEHLD----EPSALAHALCASY 414 Query: 492 AGFNEAAATYLAHLYGSNLPQVLNYKTKFEGLDE-----KESTALNYSLHEEMVLTPVDY 546 A A YGS +L + L E + ++Y + EE T D Sbjct: 415 PWLPGPIARRWARTYGSRSWLLLKGTDSLQDLGECFGAGLHAREVDYLMVEEWAQTAEDI 474 Query: 547 LLRRTNHILFMR 558 L RRT LFM+ Sbjct: 475 LWRRTKLGLFMQ 486 Lambda K H 0.314 0.132 0.368 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 597 Number of extensions: 31 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 609 Length of database: 514 Length adjustment: 36 Effective length of query: 573 Effective length of database: 478 Effective search space: 273894 Effective search space used: 273894 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.2 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 42 (21.9 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory