Align Phenylacetate permease, Ppa (characterized)
to candidate GFF2882 Psest_2938 transporter, SSS family
Query= TCDB::O50471 (520 letters) >FitnessBrowser__psRCH2:GFF2882 Length = 551 Score = 739 bits (1907), Expect = 0.0 Identities = 358/519 (68%), Positives = 435/519 (83%) Query: 2 NWTAISMFMVFVCFTLLVTRWAALRTRSASDFYTAGGGLTGMQNGLAIAGDMISAASFLG 61 N+TAI MF+VF+ FT+ +T+WAA R S +D+YTAGG +TG QNGLAIAGD +SAASFLG Sbjct: 33 NYTAIIMFVVFIAFTMGITKWAAKRNTSTADYYTAGGSITGFQNGLAIAGDFMSAASFLG 92 Query: 62 ISAMMFMNGYDGLLYALGVLAGWPIILFLIAERLRNLGKYTFADVVSYRLAQTPVRLTSA 121 ISA+++ +GYDGL+Y++G L GWPIILFL+AERLRNLGK+TF+DV SYRL QT +RL SA Sbjct: 93 ISALVYTSGYDGLIYSIGFLVGWPIILFLMAERLRNLGKFTFSDVASYRLGQTQIRLLSA 152 Query: 122 FGTLVVALMYLVAQMVGAGKLIELLFGISYLYAVMLVGVLMVAYVTFGGMLATTWVQIIK 181 FG+L+V YL+AQMVGAGKLI+LLFG+ Y AV+LVGVLMV YV FGGMLATTWVQIIK Sbjct: 153 FGSLIVVAFYLIAQMVGAGKLIQLLFGLDYYVAVVLVGVLMVMYVLFGGMLATTWVQIIK 212 Query: 182 AVMLLSGTSFMAFMVLKHFGFSTEAMFASAVAVHAKGQAIMAPGGLLSNPVDAISLGLGM 241 AV+LLSG SFMA MV+K GF ++FA AV +H KG IM+PGGL+S+P+ AISLGL + Sbjct: 213 AVLLLSGASFMAIMVMKSVGFDFGSLFAEAVKIHEKGAQIMSPGGLVSDPISAISLGLAL 272 Query: 242 MFGTAGLPHILMRFFTVSDAKEARKSVFYATGFIGYFYLLLIVIGFGAIVMVGTEPSYRD 301 MFGTAGLPHILMRFFTVSDAKEARKSVFYATGFIGYFY+L +IGFGAI++V T P ++D Sbjct: 273 MFGTAGLPHILMRFFTVSDAKEARKSVFYATGFIGYFYILTFIIGFGAILLVSTNPEFKD 332 Query: 302 ATGAIIGGGNMIAVHLAQAVGGNLFLGFISAVAFATILAVVAGLALSGASAVSHDLYACV 361 TGAI+GG NM+A+HLA AVGGNLFLGFISAVAFATILAVVAGL L+GASAVSHDLYACV Sbjct: 333 VTGAIVGGTNMVAIHLASAVGGNLFLGFISAVAFATILAVVAGLTLAGASAVSHDLYACV 392 Query: 362 IRQGKATEQEEMRVSRIATLLIGLLAVLLGLMFESQNIAFLSGLVLAVAASVNFPVLLLS 421 I+QGKA E++EMRV+++ TL +G++A+LLG++FE QNIAF+ GL ++AAS NFPVL LS Sbjct: 393 IKQGKAREEDEMRVTKLTTLTLGVVAILLGIIFEKQNIAFMVGLAFSIAASCNFPVLFLS 452 Query: 422 MFWKGLTTRGAVCGSMAGLASAVLLVVLGPAVWVNVLHHEKALFPYSNPALFSMSLAFLS 481 M+WKGL+TRGA+ G GL +A+LL ++ P VWV+V +A+FPY PALFSM+ AF Sbjct: 453 MYWKGLSTRGALFGGSLGLFTALLLTIISPTVWVDVFGFAEAIFPYKYPALFSMAAAFAG 512 Query: 482 AWVFSVTDSSERASEERGRYLAQFIRSMTGIGAAGASKH 520 W FSVTD S+RA EER R+ AQF+RS TG+GA GA H Sbjct: 513 IWFFSVTDKSKRAGEERERFFAQFVRSQTGLGATGAVAH 551 Lambda K H 0.328 0.139 0.407 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 946 Number of extensions: 42 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 551 Length adjustment: 35 Effective length of query: 485 Effective length of database: 516 Effective search space: 250260 Effective search space used: 250260 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory