GapMind for catabolism of small carbon sources

 

Aligments for a candidate for acn in Pseudomonas stutzeri RCH2

Align Aconitate hydratase A; ACN; Aconitase; (2R,3S)-2-methylisocitrate dehydratase; (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate dehydratase; IP210; Iron-responsive protein-like; IRP-like; Major iron-containing protein; MICP; Probable 2-methyl-cis-aconitate hydratase; RNA-binding protein; EC 4.2.1.3; EC 4.2.1.99 (characterized)
to candidate GFF2473 Psest_2521 aconitate hydratase 1

Query= SwissProt::P37032
         (891 letters)



>lcl|FitnessBrowser__psRCH2:GFF2473 Psest_2521 aconitate hydratase 1
          Length = 891

 Score = 1246 bits (3224), Expect = 0.0
 Identities = 618/885 (69%), Positives = 717/885 (81%), Gaps = 2/885 (0%)

Query: 6   DSLSTKSQLTVDGKTYNYYSLKEAENKHFKGINRLPYSLKVLLENLLRFEDGNTVTTKDI 65
           DSL  +  L V GKTY+YYSL +A  +    I+RLP SLKVLLENLLR+ED  TV   D+
Sbjct: 5   DSLKCRRSLEVAGKTYHYYSLPDAAAQ-LGDISRLPTSLKVLLENLLRWEDNQTVRADDL 63

Query: 66  KAIADWLHNKTSQHEIAFRPTRVLMQDFTGVPAVVDLAAMRTAIVKMGGNADKISPLSPV 125
           K++  WL  ++S  EI +RP RVLMQDFTGVPAVVDLAAMR A+ K GG+  KI+PLSPV
Sbjct: 64  KSLVSWLDTRSSTMEIQYRPARVLMQDFTGVPAVVDLAAMRDAVAKAGGDPQKINPLSPV 123

Query: 126 DLVIDHSVMVDKFASADALEVNTKIEIERNKERYEFLRWGQKAFSNFQVVPPGTGICHQV 185
           DLVIDHSVMVD+F S  A E N +IE++RN ERYEFLRWGQ+AF NF VVPPGTGICHQV
Sbjct: 124 DLVIDHSVMVDRFGSDQAFEQNVEIEMQRNGERYEFLRWGQQAFDNFAVVPPGTGICHQV 183

Query: 186 NLEYLGKTVWNSENDGQLYAYPDTLVGTDSHTTMINGLGVLGWGVGGIEAEAAMLGQPVS 245
           NLEYLG+ VW  E +G+ +AYPDTLVGTDSHTTMINGLGVLGWGVGGIEAEAAMLGQPVS
Sbjct: 184 NLEYLGQVVWTREENGETFAYPDTLVGTDSHTTMINGLGVLGWGVGGIEAEAAMLGQPVS 243

Query: 246 MLIPEVIGFKLSGKLKEGITATDLVLTVTQMLRKKGVVGKFVEFYGPGLNDLPLADRATI 305
           MLIPEVIGF+L+GKL EG+TATDLVLTVTQMLRK GVVGKFVEFYGPGL+ LPLADRATI
Sbjct: 244 MLIPEVIGFRLTGKLNEGVTATDLVLTVTQMLRKHGVVGKFVEFYGPGLDHLPLADRATI 303

Query: 306 SNMAPEYGATCGFFPVDKETIKYLELTGRDKHTIALVEAYAKAQGMWYDKDNEEPVFTDS 365
            NMAPEYGATCGFFPVD+ TI YL LTGR++  IALVEAY+KAQGMW D ++  P FT +
Sbjct: 304 GNMAPEYGATCGFFPVDQVTIDYLRLTGRNEERIALVEAYSKAQGMWRDSNSPAPEFTAT 363

Query: 366 LHLDLGSVEPSLAGPKRPQDKVNLSSLPVEFNNFLIEVGKEKEKEKTFAVKNKDFQMKHG 425
           L LDL  V PS+AGPKRPQD+V L  +   F+  L   G++++ +  FAV  + FQ+KHG
Sbjct: 364 LELDLSQVRPSVAGPKRPQDRVTLGDIGANFDLLLETSGRQQQADTDFAVAAEQFQLKHG 423

Query: 426 HVVIAAITSCTNTSNPSVLMAAGLVAKKAIEKGLQRKPWVKSSLAPGSKVVTDYLRHAGL 485
            VVIAAITSCTNTSNP+VLMAAGLVAKKAIE+GLQRKPWVK+SLAPGSKVVTDYL  AGL
Sbjct: 424 AVVIAAITSCTNTSNPNVLMAAGLVAKKAIERGLQRKPWVKTSLAPGSKVVTDYLERAGL 483

Query: 486 QTYLDQLGFNLVGYGCTTCIGNSGPLPDDISHCVAEHDLVVSSVLSGNRNFEGRVHPQVR 545
             YLD+LGFNLVGYGCTTCIGNSGPLPD I   + ++DL+VSSVLSGNRNFEGRVHP V+
Sbjct: 484 TRYLDELGFNLVGYGCTTCIGNSGPLPDAIGQAITDNDLIVSSVLSGNRNFEGRVHPLVK 543

Query: 546 ANWLASPPLVVAYALCGTTCSDLSREPIGQDKEGNDVYLKDIWPSNEEIAAEVAKVSGTM 605
           ANWLASPPLVVA+AL GTT  D+ REP+G D +   VYLKDIWPS+ EIA  VA++ G M
Sbjct: 544 ANWLASPPLVVAFALAGTTRIDMDREPLGYDAQNQPVYLKDIWPSSAEIAEAVARIDGEM 603

Query: 606 FRKEYAEVFKGDAHWQAIQTSSGQTYEWNPDSTYIQHPPFFENLSLKPEPLKPIKQAYVL 665
           FR  YA+VF GD HWQ I  S+G TY WN +S+Y+Q+PP+FE++   P P   ++ A VL
Sbjct: 604 FRSRYADVFSGDEHWQKIPVSAGDTYAWNANSSYVQNPPYFEDIGQPPTPPADVENARVL 663

Query: 666 ALFGDSITTDHISPAGSIKASSPAGLYLKSKGVDEKDFNSYGSRRGNHEVMMRGTFANIR 725
           A+FGDSITTDHISPAG+IKASSPAGLYL+S GV  +DFNSYGSRRGNHEVMMRGTFANIR
Sbjct: 664 AVFGDSITTDHISPAGNIKASSPAGLYLQSLGVAPEDFNSYGSRRGNHEVMMRGTFANIR 723

Query: 726 IRNEMTPGQEGGVTRYVPTGETMSIYDAAMRYQENQQDLVIIAGKEYGTGSSRDWAAKGT 785
           IRNEM  G+EGG T Y P+GE +SIYDAAMRYQ     LV+IAGKEYGTGSSRDWAAKGT
Sbjct: 724 IRNEMLGGEEGGNTLYQPSGEKLSIYDAAMRYQAEGVPLVVIAGKEYGTGSSRDWAAKGT 783

Query: 786 NLLGVKAVITESFERIHRSNLIGMGILPLQFKEGTTRKTLKLDGSERISIE-ISDKLTPG 844
           NLLGVKAVI ESFERIHRSNLIGMG+L LQF    TR++L L+G E++SI  +   + P 
Sbjct: 784 NLLGVKAVIAESFERIHRSNLIGMGVLALQFVNDQTRQSLGLNGMEKLSIRGLDADIKPR 843

Query: 845 AMVPVTIERQDGDIEKIETLCRIDTADELEYYKNGGILQYVLRKI 889
            M+ V +ER DG  +  + L RIDT +E++Y+K GGIL YVLR++
Sbjct: 844 QMLTVDVERADGSRDSFQVLSRIDTLNEVQYFKAGGILHYVLRQL 888


Lambda     K      H
   0.316    0.134    0.393 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2085
Number of extensions: 104
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 891
Length of database: 891
Length adjustment: 43
Effective length of query: 848
Effective length of database: 848
Effective search space:   719104
Effective search space used:   719104
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 56 (26.2 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory