Align malonate-semialdehyde dehydrogenase (acetylating) (EC 1.2.1.18) (characterized)
to candidate GFF2388 Psest_2436 methylmalonic acid semialdehyde dehydrogenase
Query= BRENDA::Q9EQ20 (535 letters) >FitnessBrowser__psRCH2:GFF2388 Length = 503 Score = 616 bits (1589), Expect = 0.0 Identities = 296/488 (60%), Positives = 373/488 (76%) Query: 33 SSSSVPTVKLFIDGKFVESKSDKWIDIHNPATNEVVGRVPQSTKAEMDAAVESCKRAFPA 92 +SSS+PTVKL IDG+F+ES + W D+ NPAT EV+ RVP +T E+D AV S ++AF Sbjct: 3 TSSSIPTVKLLIDGEFIESTTQDWRDVVNPATQEVLARVPFATAEEIDRAVASGQKAFKT 62 Query: 93 WADTSILSRQQVLLRYQQLIKENLKEIARLITLEQGKTLADAEGDVFRGLQVVEHACSVT 152 W T I +R ++ L+YQQLI+EN+KE+A ++T EQGKTLADAEGDVFRGL+VVEHA + Sbjct: 63 WRKTPIGARARIFLKYQQLIRENMKELAAILTAEQGKTLADAEGDVFRGLEVVEHAAGIG 122 Query: 153 SLMLGETMPSITKDMDLYSYRLPLGVCAGIAPFNFPAMIPLWMFPMAMVCGNTFLMKPSE 212 +L LGE ++ +D Y+ PLGVCAGI PFNFPAMIPLWMFPMA+ GNTF++KPSE Sbjct: 123 NLQLGELANNVAAGVDTYTLLQPLGVCAGITPFNFPAMIPLWMFPMAIATGNTFVLKPSE 182 Query: 213 RVPGATMLLAKLLQDSGAPDGTLNIIHGQHDAVNFICDHPDIKAISFVGSNQAGEYIFER 272 + P TM L +L ++G P G LN++HG D VN ICDHPDIKA+SFVGS + G +++ R Sbjct: 183 QDPMVTMRLCELALEAGVPPGVLNVVHGGPDVVNAICDHPDIKAVSFVGSTKVGTHVYNR 242 Query: 273 GSRNGKRVQANMGAKNHGVVMPDANKENTLNQLVGAAFGAAGQRCMALSTAILVGEAKKW 332 S+ GKRVQ MGAKNH +V+PDA+KE TLN L GAAFGAAGQRCMALS +LVGEA+ W Sbjct: 243 ASQAGKRVQCMMGAKNHAIVLPDAHKEQTLNNLAGAAFGAAGQRCMALSVVVLVGEAQAW 302 Query: 333 LPELVDRAKNLRVNAGDQPGADLGPLITPQAKERVCNLIDSGTKEGASILLDGRRIKVKG 392 +P+LV +A+ L+VNAG + G D+GPL++ A +RV LI+ G +EGA + LDGR V G Sbjct: 303 IPDLVAKAQTLKVNAGVEAGTDVGPLVSCAALDRVSGLIERGVREGAKLELDGRNPSVSG 362 Query: 393 YENGNFVGPTIISNVKPSMTCYKEEIFGPVLVVLETETLDEAIKIVNDNPYGNGTAIFTT 452 YENGNFVGPTI S V M+ Y+EEIFGPVL V+ T+DEAI+++N NP GNGTAIFT Sbjct: 363 YENGNFVGPTIFSGVTREMSVYQEEIFGPVLCVMAAATMDEAIELINANPNGNGTAIFTR 422 Query: 453 NGATARKYAHMVDVGQVGVNVPIPVPLPMFSFTGSRSSFRGDTNFYGKQGIQFYTQLKTI 512 +GA AR + +DVGQVG+NVPIPVP+PMFSFTGSR+S GD YGKQ +QFYTQ KTI Sbjct: 423 SGAAARHFQEEIDVGQVGINVPIPVPVPMFSFTGSRASKLGDLGPYGKQVVQFYTQTKTI 482 Query: 513 TSQWKEED 520 T +W +E+ Sbjct: 483 TERWFDEN 490 Lambda K H 0.318 0.133 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 695 Number of extensions: 27 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 535 Length of database: 503 Length adjustment: 35 Effective length of query: 500 Effective length of database: 468 Effective search space: 234000 Effective search space used: 234000 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory