Align Sodium/proline symporter; Proline permease; Propionate transporter (characterized)
to candidate GFF3020 Psest_3078 sodium/proline symporter
Query= SwissProt::P07117 (502 letters) >FitnessBrowser__psRCH2:GFF3020 Length = 494 Score = 741 bits (1914), Expect = 0.0 Identities = 364/493 (73%), Positives = 427/493 (86%) Query: 1 MAISTPMLVTFCVYIFGMILIGFIAWRSTKNFDDYILGGRSLGPFVTALSAGASDMSGWL 60 M+ISTP L+TF +YI MILIGF+A+R+TKNFDDYILGGRSLG FVTALSAGASDMSGWL Sbjct: 1 MSISTPTLITFLIYIAAMILIGFVAYRATKNFDDYILGGRSLGSFVTALSAGASDMSGWL 60 Query: 61 LMGLPGAVFLSGISESWIAIGLTLGAWINWKLVAGRLRVHTEYNNNALTLPDYFTGRFED 120 LMGLPGA+F++G+SESWIAIGL +GAW+NW VAGRLRVHTE+N+NALTLPDYF+ RFED Sbjct: 61 LMGLPGAIFVAGLSESWIAIGLIVGAWLNWLFVAGRLRVHTEHNHNALTLPDYFSHRFED 120 Query: 121 KSRILRIISALVILLFFTIYCASGIVAGARLFESTFGMSYETALWAGAAATILYTFIGGF 180 +SR+LRI SALVIL+FFTIYCASG+VAGARLFES+FG+ YE ALW GAAATILY FIGGF Sbjct: 121 ESRMLRIFSALVILVFFTIYCASGVVAGARLFESSFGVPYEYALWIGAAATILYVFIGGF 180 Query: 181 LAVSWTDTVQASLMIFALILTPVIVIISVGGFGDSLEVIKQKSIENVDMLKGLNFVAIIS 240 LAVSWTDTVQA+LMIFAL++TPV VI+++G G +++ I ++ DM GL+FVAIIS Sbjct: 181 LAVSWTDTVQATLMIFALLITPVFVILALGDMGAAMDTIATQNPAAFDMFSGLSFVAIIS 240 Query: 241 LMGWGLGYFGQPHILARFMAADSHHSIVHARRISMTWMILCLAGAVAVGFFGIAYFNDHP 300 L+ WGLGYFGQPHIL RFMAADS +I +ARRI M WMIL LAGAVAVGFFGIAYF HP Sbjct: 241 LLAWGLGYFGQPHILVRFMAADSIKTIPNARRIGMAWMILTLAGAVAVGFFGIAYFAGHP 300 Query: 301 ALAGAVNQNAERVFIELAQILFNPWIAGILLSAILAAVMSTLSCQLLVCSSAITEDLYKA 360 AGAV+QN ERVF+EL +ILFNPW+AGI+LS +LAAVMSTLS QLLV SSA+T+D YKA Sbjct: 301 EQAGAVSQNGERVFMELVKILFNPWVAGIILSGVLAAVMSTLSAQLLVSSSALTQDFYKA 360 Query: 361 FLRKHASQKELVWVGRVMVLVVALVAIALAANPENRVLGLVSYAWAGFGAAFGPVVLFSV 420 LRK ASQ ELVWVGR MVL++AL+AI +A+NPE++VLGLVSYAWAGFGAAFGPVVL S+ Sbjct: 361 MLRKSASQTELVWVGRGMVLLIALIAIGIASNPESKVLGLVSYAWAGFGAAFGPVVLISL 420 Query: 421 MWSRMTRNGALAGMIIGALTVIVWKQFGWLGLYEIIPGFIFGSIGIVVFSLLGKAPSAAM 480 +W RMTRNGALAGM++GA+TV+VWK+F LGLYEIIPGFI SI I V S +G P+ ++ Sbjct: 421 LWKRMTRNGALAGMLVGAVTVVVWKEFIGLGLYEIIPGFILASIAIFVVSKMGAEPAPSI 480 Query: 481 QKRFAEADAHYHS 493 KRF EADA YH+ Sbjct: 481 IKRFEEADADYHA 493 Lambda K H 0.328 0.140 0.436 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 933 Number of extensions: 42 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 502 Length of database: 494 Length adjustment: 34 Effective length of query: 468 Effective length of database: 460 Effective search space: 215280 Effective search space used: 215280 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory