Align Monocarboxylic acid transporter (characterized)
to candidate GFF346 Psest_0347 probable sodium:solute symporter, VC_2705 subfamily
Query= SwissProt::Q8NS49 (551 letters) >FitnessBrowser__psRCH2:GFF346 Length = 589 Score = 146 bits (369), Expect = 2e-39 Identities = 87/293 (29%), Positives = 145/293 (49%), Gaps = 5/293 (1%) Query: 23 ISVFVVFIIVTMTVVLRVGKSTSESTDFYTGGASFSGTQNGLAIAGDYLSAASFLGIVGA 82 I++ V + + + V + +FY G NG+A A D++SAASF+ + G Sbjct: 6 INMLFVGASFLLYIGIAVWARAGSTKEFYVAGGGVHPVTNGMATAADWMSAASFISMAGL 65 Query: 83 ISLNGYDGFLYSIGFFVAWLVALLLVAEPLRNVGRFTMADVLSFRLRQKPVRVAAACGTL 142 I+ GY +Y +G+ +++ +L+A LR G+FT+ D + R + R+ A + Sbjct: 66 IASGGYATSVYLMGWTGGYVLLAMLLAPYLRKFGKFTVPDFIGDRFYSRGARLTAVVCLI 125 Query: 143 AVTLFYLIAQMAGAGSLVSVLLDIHEFKWQAVVVGIVGIVMIAYVLLGGMKGTTYVQMIK 202 +++ Y+I QMAGAG S L++ + + I ++ AY + GGMKG TY Q+ + Sbjct: 126 LISVTYVIGQMAGAGVAFSRFLEVS----NSAGIWIAAAIVFAYAVFGGMKGITYTQVAQ 181 Query: 203 AVLLVGGVAIMTVLTFVKVSGGLTTLLNDAVEKHAASDYAATKGYDPTQILEPGLQYGAT 262 ++L+ I V ++++G + H S D Y A Sbjct: 182 YIVLIIAYTIPAVFIAMQLTGNPIPMFG-MFGTHVDSGVPLLDKLDQVVTDLGFAAYTAD 240 Query: 263 LTTQLDFISLALALCLGTAGLPHVLMRFYTVPTAKEARKSVTWAIVLIGAFYL 315 + +L+ L+L +GTAGLPHV++RF+TVP +AR S W +V I YL Sbjct: 241 VDNKLNMFLFTLSLMIGTAGLPHVIIRFFTVPKVADARWSAGWTLVFIALLYL 293 Score = 72.0 bits (175), Expect = 6e-17 Identities = 61/201 (30%), Positives = 100/201 (49%), Gaps = 12/201 (5%) Query: 357 MALISAVAFATVLAVVAGLAITASAAVGHDIYNAVIRNGQSTEAEQVRVSRITVVVIGLI 416 + LI+A A A L+ AGL + S+A+ HD+ +I N + +E ++ +R+++ L+ Sbjct: 395 IGLIAAGAIAAALSTAAGLLLAISSAISHDLIKTLI-NPKISEKNEMLAARLSMTAAILL 453 Query: 417 SIVLGILAMTQNVAFLVALAFAVAASANLPTILYSLYWKKFNTTGAVAAIYTGLISALLL 476 + LG L A +VALAF +AA++ P ++ ++ K+ N+ GAVA + G+IS + Sbjct: 454 ATWLG-LNPPGFAAQVVALAFGLAAASLFPALMMGIFSKRVNSKGAVAGMLVGVISTAVY 512 Query: 477 IFLSPA---VSGNDS-AMVPGADWAIFPLKNPGLVSIPLAFIAGWIGTLV--GKPDNMDD 530 IFL + G S P W + G V L F + ++ P + D Sbjct: 513 IFLYLGWFFIPGTASIPNTPDQWWMGISPQAFGAVGAMLNFAVAYAVSMATEAPPQEIQD 572 Query: 531 LAAEMEVRSLTGVGVEKAVDH 551 L VR+ G GV A+DH Sbjct: 573 LVE--SVRTPKGAGV--ALDH 589 Lambda K H 0.324 0.138 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 640 Number of extensions: 29 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 551 Length of database: 589 Length adjustment: 36 Effective length of query: 515 Effective length of database: 553 Effective search space: 284795 Effective search space used: 284795 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.0 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.5 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory