Align Phosphoenolpyruvate--protein phosphotransferase (EC 2.7.3.9) (characterized)
to candidate GFF3793 Psest_3862 phosphoenolpyruvate-protein phosphotransferase
Query= reanno::WCS417:GFF780 (952 letters) >FitnessBrowser__psRCH2:GFF3793 Length = 757 Score = 346 bits (887), Expect = 4e-99 Identities = 212/562 (37%), Positives = 319/562 (56%), Gaps = 18/562 (3%) Query: 404 IAAAPGIAIGPAHIQVLQVFDYPL----RGESCAIERERLHSALADVRRDIQGLIER--- 456 I APG +G A + VL D + ++ E +AL VR D++ L E+ Sbjct: 181 IPGAPGAGVGTALV-VLPPADLDVVPDKHIDNIDAELTLFEAALEAVRADMRNLSEKLAT 239 Query: 457 SQSKAIREIFVTHQEMLDDPELTDEVDTRLKQGESAEAAWMSVIEAAAKQQESLQDALLA 516 K R +F + MLDD L EV ++ G+ A+ A V+ ++ E + DA L Sbjct: 240 QMRKEERALFDVYLMMLDDSALGGEVTKVIRTGQWAQGALRQVVREHVRRFEMMDDAYLR 299 Query: 517 ERAADLRDIGRRVLAQL--CGVETSQEPSEPYILVMDEVGPSDVARLDPARVAGILTARG 574 ERA+D++DIGRR+L+ L +T P + ILV +E+ P+ + + ++ G+++ G Sbjct: 300 ERASDVKDIGRRLLSYLQEARQQTLTYPDKT-ILVSEELSPAMLGEVPEGKLVGMVSVLG 358 Query: 575 GATAHSAIVARALGIPALVGAGPAVLLLAAGTPLLLDGQRGRLHVDADAATLQRATVERD 634 + +H AI+ARA+GIP ++GA G L++DG RG + + ++ V + Sbjct: 359 SSNSHVAILARAMGIPTVMGAVDLPYSKVDGIELIVDGYRGEIITNPGKVLREQYEVLAE 418 Query: 635 TREQRLQAASAQRHEPALTRDGHAVEVFANIGESAGVASAVEQGAEGIGLLRTELIFMAH 694 Q + R P T DGH + ++ N G A V A E+GAEG+GL RTE+ FM Sbjct: 419 QERQLSEGLDVLRELPCETIDGHRIPLWVNTGLLADVVRAQERGAEGVGLYRTEVPFMIK 478 Query: 695 PQAPDEATQEAEYRRVLDGLAGRPLVVRTLDVGGDKPLPYWPIAEEENPFLGVRGIRLTL 754 + P E Q A YR L+ P+ +R+LD+GGDK LPY+PI +EENPFLG RGIR+TL Sbjct: 479 ERFPSEKEQMAIYREQLEAFHPLPVTMRSLDIGGDKCLPYFPI-KEENPFLGWRGIRVTL 537 Query: 755 QRPQIMEAQLRALLR-SADNRPLRIMFPMVGSVDEWRAARDMTERLRLEIPVADLQL--- 810 P+I Q RA+L+ SA LRI+ PM+ + E A + R E+ L + Sbjct: 538 DHPEIFLLQTRAMLKASAGLNNLRILLPMISGIGELEEALHLIHRAWCEVRDEGLDVHMP 597 Query: 811 --GIMIEVPSAALLAPVLAKEVDFFSVGTNDLTQYTLAIDRGHPTLSAQADGLHPAVLQL 868 G+MIEVP+A L LA++VDF SVG+NDLTQY LA+DR +P ++ D LHPAVL+ Sbjct: 598 PVGVMIEVPAAVYLTRELARQVDFISVGSNDLTQYLLAVDRNNPRVADLYDYLHPAVLEA 657 Query: 869 IDITVRAAHAHGKWVGVCGELAADPLAVPVLVGLGVDELSVSARSIPEVKARVREFSLSE 928 + V+ AH+ GK V +CGE+A DP A +L+ +G D LS++A ++P+VK +R+ S+ Sbjct: 658 LQRVVKEAHSEGKPVSICGEMAGDPAAAVLLLAMGFDSLSMNATNLPKVKWLLRQISMDT 717 Query: 929 AQGLAQKALAVGSPAEVRALVE 950 AQ L + + + SP +++ V+ Sbjct: 718 AQQLLARVMLLDSPQVIQSTVQ 739 Lambda K H 0.318 0.135 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1423 Number of extensions: 73 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 952 Length of database: 757 Length adjustment: 42 Effective length of query: 910 Effective length of database: 715 Effective search space: 650650 Effective search space used: 650650 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 56 (26.2 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory