Align malonate-semialdehyde dehydrogenase (EC 1.2.1.15); malonate-semialdehyde dehydrogenase (acetylating) (EC 1.2.1.18); methylmalonate-semialdehyde dehydrogenase (CoA-acylating) (EC 1.2.1.27) (characterized)
to candidate GFF3712 Psest_3781 methylmalonic acid semialdehyde dehydrogenase
Query= BRENDA::A0A081YAY7 (498 letters) >FitnessBrowser__psRCH2:GFF3712 Length = 500 Score = 607 bits (1564), Expect = e-178 Identities = 302/499 (60%), Positives = 375/499 (75%), Gaps = 4/499 (0%) Query: 1 MTLIKHLIGGELIADTG-RTADVFNPSTGEAVRKVPLADRETMQQAIDAAKAAFPAWRNT 59 M + +LI E +A R A V+NP+ GE V L+ + ++AI AA+AAF W T Sbjct: 1 MQTLGNLINNEAVAGRSERHATVYNPANGEPRLYVSLSSADETREAIAAAQAAFDGWSKT 60 Query: 60 PPAKRAQVLFRFKQLLEANEERIVKLISEEHGKTIEDAAGELKRGIENVEYATAAPEILK 119 PP RA+V+FRFK+LLE + + +LI+ EHGK DA GE+ RG+E VE+A P +LK Sbjct: 61 PPLVRARVMFRFKELLERRRDDVARLITSEHGKVFSDAQGEVTRGLEVVEFACGIPHLLK 120 Query: 120 GEYSRNVGPNIDAWSDFQPIGVVAGITPFNFPAMVPLWMYPLAIACGNTFILKPSERDPS 179 GE+S NVG +ID+ S QP+GV GITPFNFPAMVPLWM P+AIACGNTF+LKPSE+DPS Sbjct: 121 GEFSSNVGRDIDSNSLMQPLGVCVGITPFNFPAMVPLWMLPVAIACGNTFVLKPSEKDPS 180 Query: 180 STLLIAELFHEAGLPKGVLNVVHGDKGAVDALIEAPEVKALSFVGSTPIAEYIYSEGTKR 239 +T+L+ EL EAGLP GVLN+V+GDK AVD L+ V+++SFVGSTPIAEYIY+ + Sbjct: 181 ATMLLGELLAEAGLPAGVLNIVNGDKEAVDVLLTDERVQSVSFVGSTPIAEYIYATASAH 240 Query: 240 GKRVQALGGAKNHAVLMPDADLDNAVSALMGAAYGSCGERCMAISVAVCVGDQIADALVQ 299 GKR QALGGAKNH V+MPDAD VS+L+GAAYGS GERCMAISVAVCVGD++AD LV Sbjct: 241 GKRCQALGGAKNHMVVMPDADPQQVVSSLIGAAYGSAGERCMAISVAVCVGDEVADKLVG 300 Query: 300 KLVPQIKGLKIGAGTSCGLD--MGPLVTGAARDKVTGYIDTGVAQGAELVVDGRGYKVAG 357 L +I ++ G G + MGPLVT + KV+GYID GV +GA LV DGRG KV G Sbjct: 301 MLQDEIGQMRTGPGLGIEPEPHMGPLVTREHQQKVSGYIDLGVEEGATLVCDGRGIKVEG 360 Query: 358 HENGFFLGGTLFDRVTPEMTIYKEEIFGPVLCIVRVNSLEEAMQLINDHEYGNGTCIFTR 417 HENGF++G TLFDRVTP M IY+EEIFGPVL +VRV S +EA+QLINDHEYGNGT IFTR Sbjct: 361 HENGFYVGPTLFDRVTPSMRIYREEIFGPVLAVVRVKSFDEALQLINDHEYGNGTSIFTR 420 Query: 418 DGEAARLFCDEIEVGMVGVNVPLPVPVAYHSFGGWKRSLFGDLHAYGPDGVRFYTKRKAI 477 DG+ AR F + ++VGMVGVNVP+PVP+A+H FGGWKRS+FG L+ +GPDGVRF+T+ K + Sbjct: 421 DGDTARQFEENVKVGMVGVNVPIPVPMAFHCFGGWKRSVFGPLNMHGPDGVRFFTRMKTV 480 Query: 478 TQRWPQRKSHEAAQFAFPS 496 T+RWP A+FA P+ Sbjct: 481 TRRWP-TGIRAGAEFAMPT 498 Lambda K H 0.319 0.137 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 747 Number of extensions: 28 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 498 Length of database: 500 Length adjustment: 34 Effective length of query: 464 Effective length of database: 466 Effective search space: 216224 Effective search space used: 216224 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory