Align trehalose-6-phosphate hydrolase (TreC) (EC 3.2.1.93) (characterized)
to candidate GFF856 Psest_0870 Glycosidases
Query= CAZy::AAC77196.1 (551 letters) >FitnessBrowser__psRCH2:GFF856 Length = 542 Score = 293 bits (750), Expect = 1e-83 Identities = 178/528 (33%), Positives = 263/528 (49%), Gaps = 61/528 (11%) Query: 4 LPHWWQNGVIYQIYPKSFQDTTGSGTGDLRGVIQHLDYLHKLGVDAIWLTPFYVSPQVDN 63 L +WW+ GVIYQ+YP+SF D+ G G GDL GV+ LDY+ L VDAIWL+PF+ SP D Sbjct: 5 LQNWWRGGVIYQVYPRSFFDSNGDGVGDLPGVLHKLDYIASLNVDAIWLSPFFTSPMKDF 64 Query: 64 GYDVANYTAIDPTYGTLDDFDELVTQAKSRGIRIILDMVFNHTSTQHAWFREA-LNKESP 122 GYDVA+Y +DP +GTLDDF LV RG+R+++D V NH+S QH WF E+ ++++ Sbjct: 65 GYDVADYRGVDPLFGTLDDFVRLVEACHERGMRVLIDQVLNHSSDQHPWFAESRSSRDND 124 Query: 123 YRQFYIWRDGEPE-TPPNNWRSKFGGSAWRWHAESEQYYLHLFAPEQADLNWENPAVRAE 181 +Y+W D +P+ T PNNW S FGG AW W + QYYLH F Q DLN+ PAV+ + Sbjct: 125 KADWYVWADPKPDGTVPNNWLSVFGGPAWSWDSRRRQYYLHNFLSSQPDLNFHCPAVQDQ 184 Query: 182 LKKVCEFWADRGVDGLRLDVVNLISKDPRFPEDLDGDGRR-----FYTDGPRAH------ 230 L EFW GVDG RLD N D ++ R D P A+ Sbjct: 185 LLDDMEFWLKLGVDGFRLDAANFYFHDAELRDNPPNTEIREGSIGVRIDNPYAYQRHIYD 244 Query: 231 -------EFLHEMNRDVFTPRGLMTVGEMSSTSLEHCQRYAALT--GSELSMTFNFHHLK 281 +FL + + G +V E+ E + AA T G L M ++F L Sbjct: 245 KTRPENMDFLRRLRALLQRYPGASSVAEIGCD--ESLRTMAAYTSGGDTLHMAYSFDLLT 302 Query: 282 VDYPGGEKWTLAKPDFVALKTLFRHWQQGMHNV---AWNALFWCNHDQPRIVSRFGDEGE 338 P ++ RH +G+ W+ NHD R+++R+ G Sbjct: 303 EQ---------CSPGYI------RHTVEGIERELADGWSCWSMGNHDVVRVMTRWALNGR 347 Query: 339 YRVPAAKMLAMVLHGMQGTPYIYQGEEIGMTNPHFTRITDYRDVESLNMFAELRNDGRDA 398 ++L +L ++G+ +YQGEE+G+ R D D + + E Sbjct: 348 PDPERGRLLMALLLSLRGSVCMYQGEELGLPEAEL-RYEDLVDPYGITFWPEF------- 399 Query: 399 DELLAILASKSRDNSRTPMQW-SNGDNAGFTAGEPWIGLGDNYQQINVEAALADDSSVFY 457 K RD RTPM W S +AGFT +PW+ + D+++ ++V A AD S+ Sbjct: 400 ---------KGRDGCRTPMPWESEAHHAGFTGSQPWLPVDDSHRSLSVAAQDADPHSMLN 450 Query: 458 TYQKLIALRKQEAILTWGNYQDLLPNSPVLWCYRREWKGQTLLVIANL 505 Y++ + R+++ +L G+ ++ + L + R + L + NL Sbjct: 451 CYRRFLGWRREQRLLIEGDIH-MVYHDDALLVFERRLGDEAWLCLFNL 497 Lambda K H 0.320 0.136 0.448 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1045 Number of extensions: 54 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 551 Length of database: 542 Length adjustment: 36 Effective length of query: 515 Effective length of database: 506 Effective search space: 260590 Effective search space used: 260590 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory