GapMind for catabolism of small carbon sources

 

Alignments for a candidate for catB in Pseudomonas stutzeri RCH2

Align Muconate cycloisomerase 1; Cis,cis-muconate lactonizing enzyme I; MLE; Muconate cycloisomerase I; EC 5.5.1.1 (characterized)
to candidate GFF2642 Psest_2694 muconate and chloromuconate cycloisomerases

Query= SwissProt::P08310
         (375 letters)



>FitnessBrowser__psRCH2:GFF2642
          Length = 373

 Score =  608 bits (1569), Expect = e-179
 Identities = 312/375 (83%), Positives = 342/375 (91%), Gaps = 2/375 (0%)

Query: 1   MTSVLIERIEAIIVHDLPTIRPPHKLAMHTMQTQTLVLIRVRCSDGVEGIGEATTIGGLA 60
           M+ +LIE I+AI+V DLPTIRP HKLAMHTMQ QTLV+IRV+CSDG+EGIGE+TTIGGLA
Sbjct: 1   MSPILIESIQAIVV-DLPTIRP-HKLAMHTMQQQTLVVIRVKCSDGIEGIGESTTIGGLA 58

Query: 61  YGYESPEGIKANIDAHLAPALVGLPADNINAAMLKLDKLAKGNTFAKSGIESALLDAQGK 120
           YG ESPE IK NID+HL P LVG  A NINAAML+LDK AKGNTFAKSG+ESALLDAQGK
Sbjct: 59  YGNESPESIKQNIDSHLGPLLVGQDAANINAAMLRLDKAAKGNTFAKSGLESALLDAQGK 118

Query: 121 RLGLPVSELLGGRVRDSLEVAWTLASGDTARDIAEAQHMLEIRRHRVFKLKIGANPLAQD 180
           RL LPVSELLGGRVRDSLEVAWTLASG+T +DI EA+HML+IRRHR+FKLKIGA  +  D
Sbjct: 119 RLALPVSELLGGRVRDSLEVAWTLASGNTTKDIEEAEHMLDIRRHRIFKLKIGAGEVNAD 178

Query: 181 LKHVVAIKRELGDSASVRVDVNQYWDESQAIRACQVLGDNGIDLIEQPISRINRSGQVRL 240
           LKHV+AIK+ LG+ ASVRVDVNQ WDES A+RAC++LGDNGIDLIEQPISRINR GQVRL
Sbjct: 179 LKHVIAIKQALGERASVRVDVNQAWDESVALRACRILGDNGIDLIEQPISRINRGGQVRL 238

Query: 241 NQRSPAPIMADESIESVEDAFSLAADGAASIFALKIAKNGGPRAVLRTAQIAEAAGIALY 300
           NQRSPAPIMADESIESVEDAFSLAADGAASIFALKIAKNGGPRAVLRTAQIAEAAGIALY
Sbjct: 239 NQRSPAPIMADESIESVEDAFSLAADGAASIFALKIAKNGGPRAVLRTAQIAEAAGIALY 298

Query: 301 GGTMLEGSIGTLASAHAFLTLRQLTWGTELFGPLLLTEEIVNEPPQYRDFQLHIPRTPGL 360
           GGTMLEG+IGTLASAHAF+T+ +LTW TELFGPLLLTEEIV E P YRDFQL +PRTPGL
Sbjct: 299 GGTMLEGAIGTLASAHAFVTINKLTWATELFGPLLLTEEIVTEAPVYRDFQLEVPRTPGL 358

Query: 361 GLTLDEQRLARFARR 375
           GLTLDE+RLA FAR+
Sbjct: 359 GLTLDEERLAFFARK 373


Lambda     K      H
   0.319    0.136    0.385 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 529
Number of extensions: 12
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 375
Length of database: 373
Length adjustment: 30
Effective length of query: 345
Effective length of database: 343
Effective search space:   118335
Effective search space used:   118335
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory