Align xylonate dehydratase (EC 4.2.1.82) (characterized)
to candidate GFF233 Psest_0234 dihydroxy-acid dehydratase
Query= BRENDA::P39358 (655 letters) >lcl|FitnessBrowser__psRCH2:GFF233 Psest_0234 dihydroxy-acid dehydratase Length = 612 Score = 206 bits (525), Expect = 2e-57 Identities = 167/511 (32%), Positives = 248/511 (48%), Gaps = 67/511 (13%) Query: 120 DGRTQGTTGMFDSLPYRNDASMVMRRLIRSLPDAKAVIGVASCDKGLPATMMALAAQHNI 179 DG G GM SLP R + + ++ + A A++ +++CDK P +MA A + NI Sbjct: 81 DGIAMGHDGMLYSLPSREIIADSVEYMVNA-HCADAIVCISNCDKITPGMLMA-ALRLNI 138 Query: 180 ATVLVPGGA-----TLPAKDGEDNGKVQTIGARFANGELSLQDARRAGCKACASSGGGCQ 234 V V GG T A G D I A + + + + R+ C C G C Sbjct: 139 PVVFVSGGPMEAGKTKLASHGLDLVDAMVIAADESASDEKVAEYERSACPTC----GSCS 194 Query: 235 FLGTAGTSQVVAEGLGLAIPHSALAPSGEPVWREIARASARAALNLSQK-------GITT 287 + TA + +AE LGLA+P + + ++ + R + L ++ + Sbjct: 195 GMFTANSMNCLAEALGLALPGNGSTLATHSDREQLFLRAGRTVVELCKRYYGEGDESVLP 254 Query: 288 REILTDKAIENAMTVHAAFGGSTNLLLHIPAIAHQAGCHIPTVDDWIR----INKRVPRL 343 R I + +A ENAMT+ A GGSTN +LH+ A A +A VD +R ++++VP+L Sbjct: 255 RNIASRRAFENAMTLDIAMGGSTNTILHLLAAAQEA-----EVDFDLRAIDALSRKVPQL 309 Query: 344 VSVLPNGPVYHPTVNAFMAGGVPEVMLHLRSLGLLHEDVMTVTGSTLKENLDWWEHSERR 403 V PN YH + AGG+ ++ L GLLH DV TV TL E + W+ ++ + Sbjct: 310 CKVAPNIQKYH-MEDVHRAGGIFSILGELARGGLLHTDVPTVHSRTLAEGIAQWDITQTQ 368 Query: 404 QR------------------FKQLL----LDQEQINADEVIMSPQQAKARGLTSTITFPV 441 F Q LD ++ N I S + A ++ + + Sbjct: 369 DEAVHTFFKAGPAGIPTQTAFSQSTRWDSLDDDRENG--CIRSVEHAYSQEGGLAVLY-- 424 Query: 442 GNIAPEGSVIKSTAIDPSMIDEQGIYYHKGVAKVYLSEKSAIYDIKHDKIKAGDILVIIG 501 GNIA +G V+K+ +D S I+ +G AK+Y S+ SA+ I D++KAGDI++I Sbjct: 425 GNIALDGCVVKTAGVDES------IHVFEGTAKIYESQDSAVKGILADEVKAGDIVIIRY 478 Query: 502 VGP-SGTGMEETYQVTSALKHLSYGKHVSLITDARFSGVSTGACIGHVGPEALAGGPIGK 560 GP G GM+E TS LK GK +L+TD RFSG ++G IGH PEA AGG IG Sbjct: 479 EGPKGGPGMQEMLYPTSYLKSKGLGKDCALLTDGRFSGGTSGLSIGHASPEAAAGGAIGL 538 Query: 561 LRTGDLIEIKIDCRELHGEVNFLGTRSDEQL 591 +R GD + I I R + +V SDE+L Sbjct: 539 VRDGDKVLIDIPNRSIQLQV------SDEEL 563 Lambda K H 0.317 0.135 0.400 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 909 Number of extensions: 52 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 655 Length of database: 612 Length adjustment: 38 Effective length of query: 617 Effective length of database: 574 Effective search space: 354158 Effective search space used: 354158 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 54 (25.4 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory