Align 2-hydroxymuconate-6-semialdehyde dehydrogenase (EC 1.2.1.85) (characterized)
to candidate PfGW456L13_1083 Betaine aldehyde dehydrogenase (EC 1.2.1.8)
Query= metacyc::MONOMER-15108 (486 letters) >lcl|FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_1083 Betaine aldehyde dehydrogenase (EC 1.2.1.8) Length = 490 Score = 372 bits (956), Expect = e-107 Identities = 197/476 (41%), Positives = 287/476 (60%), Gaps = 5/476 (1%) Query: 14 FIDGKFVPSLDGKTFDNINPATEEKLGTVAEGGAAEIDLAVQAAKKALNGPWKKMTANER 73 +IDG + + TF+ INPA E L V +++ AV +A+K W MTA ER Sbjct: 10 YIDGAYSDASSDATFEAINPANGEVLAKVQRATKEDVERAVVSAEKGQK-IWAAMTAMER 68 Query: 74 IAVLRKVGDLILERKEELSVLESLDTGKPTWLSGSIDIPRAAYNFHFFSDYIRTITNEAT 133 +LR+ +++ ER +EL+ LE+LDTGK + +DI A +++ + I E Sbjct: 69 SRILRRAVEILRERNDELAALETLDTGKAYSETRYVDIVTGADVLEYYAGLVPAIEGEQI 128 Query: 134 QMDDVALNYAIRRPVGVIGLINPWNLPLLLMTWKLAPALAAGNTVVMKPAELTPMTATVL 193 + + Y R P+GV+ I WN P+ + WK APALAAGN ++ KP+E+T +T L Sbjct: 129 PLRTTSFVYTRREPLGVVAGIGAWNYPIQIALWKSAPALAAGNAMIFKPSEVTSLTTLKL 188 Query: 194 AEICRDAGVPDGVVNLVHGFGPNSAGAALTEHPDVNAISFTGETTTGKIIMASAAKT-LK 252 AEI +AGVP+GV N++ G G G LTEHP + +SFTG T TGK +MASA+ + LK Sbjct: 189 AEIYTEAGVPNGVFNVLTGSG-REVGTWLTEHPRIEKVSFTGGTDTGKKVMASASSSSLK 247 Query: 253 RLSYELGGKNPNVIFADSNLDEVIETTMKSSFINQGEVCLCGSRIYVERPAYEAFLEKFV 312 ++ ELGGK+P +I D++LD +T M ++F + G+VC G+R++V AF K Sbjct: 248 DVTMELGGKSPLIICDDADLDRAADTAMMANFYSSGQVCTNGTRVFVPAHLKAAFEAKIA 307 Query: 313 AKTKELVVGDPFDAKTKVGALISDEHYERVTGYIKLAVEEGGTILTGGKRPEGLE--KGY 370 + + +G+P D T G L+S H E V GYI EEG +L GG+R E KG Sbjct: 308 ERVARIRIGNPEDENTNFGPLVSFAHMESVLGYIAKGKEEGARLLCGGERLTDGEFAKGA 367 Query: 371 FLEPTIITGLTRDCRVVKEEIFGPVVTVIPFDTEEEVLEQINDTHYGLSASVWTNDLRRA 430 F+ PT+ T T D +V+EEIFGPV+ ++ ++TEEEV+ + NDT +GL+A + T DL RA Sbjct: 368 FVAPTVFTDCTDDMTIVREEIFGPVMAILSYETEEEVIRRANDTDFGLAAGIVTKDLNRA 427 Query: 431 HRVAGQIEAGIVWVNTWFLRDLRTPFGGMKQSGIGREGGLHSFEFYSELTNICIKL 486 HRV Q+EAGI W+N W D + P GG KQSG+GRE G+ S ++ + ++ ++L Sbjct: 428 HRVIHQLEAGICWINAWGESDAKMPVGGYKQSGVGRENGISSLNNFTRIKSVQVEL 483 Lambda K H 0.318 0.136 0.404 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 633 Number of extensions: 28 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 486 Length of database: 490 Length adjustment: 34 Effective length of query: 452 Effective length of database: 456 Effective search space: 206112 Effective search space used: 206112 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory