Align Iron-sulfur cluster binding protein (characterized, see rationale)
to candidate PfGW456L13_5116 Predicted L-lactate dehydrogenase, Iron-sulfur cluster-binding subunit YkgF
Query= uniprot:E4PLR6 (483 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_5116 Length = 485 Score = 743 bits (1918), Expect = 0.0 Identities = 368/478 (76%), Positives = 405/478 (84%), Gaps = 1/478 (0%) Query: 5 IPVTELTPDFRGRAEEALADGQLRNNFRVAMDSLMTKRANAFPDADEREGLRELGNRIKA 64 IP + DFR RA AL D QLR+NFR AMDSLMTKRA AF DA ERE LR LGN I+A Sbjct: 7 IPTVAVEEDFRTRAHNALGDPQLRSNFRKAMDSLMTKRAAAFSDAHEREHLRALGNAIRA 66 Query: 65 GALSRLPDLLEQLEQKLTENGVKVHWAETVEEANSLVHGIIEARKGSQVVKGKSMVSEEM 124 ALS+LPDLLEQLEQ LT NGV VHWAETV+EAN +V II A +G QV+KGKSMVSEEM Sbjct: 67 RALSKLPDLLEQLEQNLTRNGVTVHWAETVDEANGIVLSIIRAHEGRQVIKGKSMVSEEM 126 Query: 125 EMNDYLAERGVECLESDMGEYIVQLDNEKPSHIIMPAIHKNARQVSKLFHDKLGEPETED 184 EMN LAE+G+ECLESDMGEYIVQLD+EKPSHIIMPAIHKNA QV+ LFHDKLG T+D Sbjct: 127 EMNHVLAEQGIECLESDMGEYIVQLDHEKPSHIIMPAIHKNAGQVASLFHDKLGVEYTKD 186 Query: 185 VNQLIQIGRRTLRRKFMEADVGVSGVNFAIAETGTLLLVENEGNGRMSTTAPPVHIAVTG 244 V+QLIQIGRR LR+KF EAD+GVSGVNFA+AETGTLLLVENEGNGRM+TT PPVHIAVTG Sbjct: 187 VDQLIQIGRRVLRQKFFEADIGVSGVNFAVAETGTLLLVENEGNGRMTTTVPPVHIAVTG 246 Query: 245 IEKVVPNLRDVVPLVSLLTRSALGQPITTYVNLISGPRKPDELDGPEEVHLVLLDNGRTG 304 IEKVV NLRDVVPL+SLLTRSALG PITTYVN+ISGPRK ELDGP+EVHLVLLDNGR+ Sbjct: 247 IEKVVENLRDVVPLLSLLTRSALGIPITTYVNMISGPRKEHELDGPQEVHLVLLDNGRSQ 306 Query: 305 AFADAQMRQTLNCIRCGACMNHCPVYTRVGGHTYGEVYPGPIGKIITPHMAGLDKVPDHP 364 AFAD+++RQTLNCIRCGACMNHCPVYTR+GGH YGEVYPGPIGKIITPHM GL KVPDHP Sbjct: 307 AFADSELRQTLNCIRCGACMNHCPVYTRIGGHAYGEVYPGPIGKIITPHMVGLAKVPDHP 366 Query: 365 SASSLCGACGEVCPVKIPIPELLQRLRQENVKNPEQPQQV-KGGGAKYSRTERWIWRGWQ 423 SASSLCGACGEVCPVKIPIP LL+RLR+ENVK P+ P QV +G G+KYSR ER+IW W Sbjct: 367 SASSLCGACGEVCPVKIPIPALLRRLREENVKAPDSPHQVMRGQGSKYSRKERFIWNAWA 426 Query: 424 MLNTRPALYRSFLWAATRFRALAPKKAGPWTENHSAPVPARRSLHDLAARHLDQNGGR 481 LN+ P LYR F + ATR RAL P GPWT+NHSAP PA RSLHD+A HL + G R Sbjct: 427 KLNSSPTLYRLFGFFATRLRALTPSNVGPWTQNHSAPKPAARSLHDMAREHLAKQGER 484 Lambda K H 0.317 0.135 0.403 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 741 Number of extensions: 29 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 483 Length of database: 485 Length adjustment: 34 Effective length of query: 449 Effective length of database: 451 Effective search space: 202499 Effective search space used: 202499 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory