Align High-affinity branched-chain amino acid transport system permease protein BraE, component of Branched chain amino acid uptake transporter. Transports alanine (characterized)
to candidate PfGW456L13_122 Branched-chain amino acid transport system permease protein LivM (TC 3.A.1.4.1)
Query= TCDB::P21628 (417 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_122 Length = 427 Score = 421 bits (1082), Expect = e-122 Identities = 222/412 (53%), Positives = 287/412 (69%), Gaps = 8/412 (1%) Query: 1 MSQSLKRALFSALLVILVSYPILGLKLRTVGIKLEVLGADAQTLWTIAAAALAMFVWQLF 60 + +SL A+ + L+ ++V PI+G+ L G +E ++ W +A F LF Sbjct: 11 LKRSLVDAILAGLVALIVFGPIVGVVLDGYGFNMET----SRVAWIVAIVMAGRFALSLF 66 Query: 61 RDRIPLKLGRGVGYKVNGSGLKNFL-SLPSTQRWAVLALVVVAFVWPFFASRGAVDIATL 119 + P L G++ GSG+ S RW + ++V+A V+PFF++ + + L Sbjct: 67 L-QTPKGLRILEGFETTGSGVHVLPPDYKSRLRWIIPLMIVIAVVFPFFSNSYLLGVVIL 125 Query: 120 ILIYVMLGIGLNIVVGLAGLLDLGYVGFYAVGAYTYALLAEYAGFGFWTALPIAGMMAAL 179 LIYV+LG+GLNIVVGLAGLLDLGYV FYA+GAY AL +Y G GFWT LP+A + A L Sbjct: 126 GLIYVLLGLGLNIVVGLAGLLDLGYVAFYAIGAYGLALGYQYLGLGFWTVLPLAAITAGL 185 Query: 180 FGFLLGFPVLRLRGDYLAIVTLGFGEIIRILLRNMTEITGGPNGIGSIPKPTLFGLTFER 239 G +LGFPVLRL GDYLAIVTLGFGEIIR++L N +TGGPNG+ + P PT FG+ F + Sbjct: 186 AGCILGFPVLRLHGDYLAIVTLGFGEIIRLILNNWLTLTGGPNGMAA-PLPTFFGIEFGK 244 Query: 240 RAPEGMQTFHEFFGIAYNTNYKVILLYVVALLLVLLALFVINRLMRMPIGRAWEALREDE 299 RA EG FHEFFGIAYN + K +Y V L+VL L + +RL RMP+GRAWEALREDE Sbjct: 245 RAKEGGVPFHEFFGIAYNPDVKYYFIYAVLFLVVLAVLHIKHRLTRMPVGRAWEALREDE 304 Query: 300 VACRALGLNPTIVKLSAFTIGASFAGFAGSFFAARQGLVTPESFTFIESAMILAIVVLGG 359 +ACR++GLN +VKLSAFTIGAS AG AG FFA QG V P SFTF ESA+ILAIVVLGG Sbjct: 305 IACRSMGLNHVLVKLSAFTIGASTAGLAGVFFATYQGFVNPTSFTFFESALILAIVVLGG 364 Query: 360 MGSQLGVILAAVVMVLLQE-MRGFNEYRMLIFGLTMIVMMIWRPQGLLPMQR 410 MGS +GV++AA V+ + E +RGF EYR+L+FG+ M++MMIWRP+GL+ + R Sbjct: 365 MGSTIGVVIAAFVLTVAPELLRGFAEYRVLLFGILMVLMMIWRPRGLIRISR 416 Lambda K H 0.330 0.146 0.439 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 639 Number of extensions: 45 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 417 Length of database: 427 Length adjustment: 32 Effective length of query: 385 Effective length of database: 395 Effective search space: 152075 Effective search space used: 152075 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.2 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.8 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory