Align L-alanine and D-alanine permease (characterized)
to candidate PfGW456L13_318 Histidine transport protein (permease)
Query= reanno::pseudo5_N2C3_1:AO356_17670 (473 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_318 Length = 468 Score = 520 bits (1340), Expect = e-152 Identities = 244/441 (55%), Positives = 331/441 (75%), Gaps = 1/441 (0%) Query: 18 LKRELGERHIRLMALGACIGVGLFLGSAKAIEMAGPAIMLSYIIGGLAILVIMRALGEMA 77 LKR L RHIR MALG+ IG GLF GSA AI+MAGPA++L+Y+IGG A+ ++MRALGEMA Sbjct: 8 LKRGLSARHIRFMALGSAIGTGLFYGSASAIQMAGPAVLLAYLIGGAAVFMVMRALGEMA 67 Query: 78 VHNPVAGSFSRYAQDYLGPLAGFLTGWNYWFLWLVTCVAEITAVAVYMGIWFPDVPRWIW 137 VHNPVAGSF +YA YLGP+AGF+ GW Y F ++ +A++TA +YMG WFP+V RWIW Sbjct: 68 VHNPVAGSFGQYASTYLGPMAGFILGWTYAFEMVIVGMADVTAFGIYMGFWFPEVSRWIW 127 Query: 138 ALAALVSMGSINLIAVKAFGEFEFWFALIKIVTIIAMVIGGVGIIAFGFGN-DGVALGIS 196 L + +G +NL VK FGE EFW +L+K+ I+AM++GG GI+ FG + G A IS Sbjct: 128 VLGVVSIVGGLNLCNVKVFGEMEFWLSLLKVAAIVAMILGGFGIMWFGISSAPGQATDIS 187 Query: 197 NLWAHGGFMPNGVSGVLMSLQMVMFAYLGVEMIGLTAGEAKNPQKTIPNAIGSVFWRILL 256 NLW+HGGFMPNG+ G++ S +VMFA+ G+E+IG+TAGEAK+PQ +P AI +V RILL Sbjct: 188 NLWSHGGFMPNGMGGLIASFAVVMFAFGGIEIIGVTAGEAKDPQHVLPRAINAVPLRILL 247 Query: 257 FYVGALFVILSIYPWNEIGTQGSPFVMTFERLGIKTAAGIINFVVITAALSSCNGGIFST 316 FYV + V++SI+PW +IG+QGSPFV F++LGI +AA I+N VVITAA+S+ N IF Sbjct: 248 FYVLTMLVLMSIFPWQQIGSQGSPFVQIFDKLGISSAATILNIVVITAAISAINSDIFGA 307 Query: 317 GRMLYSLAQNGQAPAGFAKTSTNGVPRRALLLSIAALLLGVLLNYLVPEKVFVWVTSIAT 376 GRM++ LAQ G AP GFA+ S NGVP +++ AALLLGVLLNYL+PE VF+ + S+AT Sbjct: 308 GRMMFGLAQQGHAPKGFARLSRNGVPWMTVVVMSAALLLGVLLNYLIPENVFLLIASVAT 367 Query: 377 FGAIWTWVMILLAQLKFRKSLSASERAALKYRMWLYPVSSYLALAFLVLVVGLMAYFPDT 436 F +W W+MIL+ Q+ R+S+SA + A LK+ + L+P + A+AF++ + G++ YFPDT Sbjct: 368 FATVWVWLMILVTQVAMRRSMSAEQVAQLKFPVPLWPYAPAAAIAFMLFIFGVLGYFPDT 427 Query: 437 RVALYVGPAFLVLLTVLFYTF 457 + AL VG ++VLL + + T+ Sbjct: 428 QAALIVGVVWIVLLVLAYLTW 448 Lambda K H 0.328 0.142 0.444 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 749 Number of extensions: 41 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 473 Length of database: 468 Length adjustment: 33 Effective length of query: 440 Effective length of database: 435 Effective search space: 191400 Effective search space used: 191400 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory