Align L-alanine and D-alanine permease (characterized)
to candidate PfGW456L13_4790 D-serine/D-alanine/glycine transporter
Query= reanno::pseudo5_N2C3_1:AO356_17670 (473 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_4790 Length = 473 Score = 905 bits (2340), Expect = 0.0 Identities = 454/473 (95%), Positives = 458/473 (96%) Query: 1 MPVGNHLPHGETAQGGPLKRELGERHIRLMALGACIGVGLFLGSAKAIEMAGPAIMLSYI 60 MPVGNHLP GETAQGGPLKRELGERHIRLMALGACIGVGLFLGSAKAIEMAGPAIMLSYI Sbjct: 1 MPVGNHLPQGETAQGGPLKRELGERHIRLMALGACIGVGLFLGSAKAIEMAGPAIMLSYI 60 Query: 61 IGGLAILVIMRALGEMAVHNPVAGSFSRYAQDYLGPLAGFLTGWNYWFLWLVTCVAEITA 120 IGGLAILVIMRALGEMAVHNPVAGSFSRYAQDYLGPLAGFLTGWNYWFLWLVTCVAEITA Sbjct: 61 IGGLAILVIMRALGEMAVHNPVAGSFSRYAQDYLGPLAGFLTGWNYWFLWLVTCVAEITA 120 Query: 121 VAVYMGIWFPDVPRWIWALAALVSMGSINLIAVKAFGEFEFWFALIKIVTIIAMVIGGVG 180 VAVYMGIWFPDVPRWIWALAAL+SMGSINLIAVKAFGEFEFWFALIKIVTIIAMV+GG+G Sbjct: 121 VAVYMGIWFPDVPRWIWALAALISMGSINLIAVKAFGEFEFWFALIKIVTIIAMVLGGIG 180 Query: 181 IIAFGFGNDGVALGISNLWAHGGFMPNGVSGVLMSLQMVMFAYLGVEMIGLTAGEAKNPQ 240 IIAFGFGNDGVALGISNLW HGGFMPNGV GVLMSLQMVMFAYLGVEMIGLTAGEAKNPQ Sbjct: 181 IIAFGFGNDGVALGISNLWTHGGFMPNGVQGVLMSLQMVMFAYLGVEMIGLTAGEAKNPQ 240 Query: 241 KTIPNAIGSVFWRILLFYVGALFVILSIYPWNEIGTQGSPFVMTFERLGIKTAAGIINFV 300 KTIPNAIGSVFWRILLFYVGALFVILSIYPWNEIGTQGSPFVMTFERLGIKTAAGIINFV Sbjct: 241 KTIPNAIGSVFWRILLFYVGALFVILSIYPWNEIGTQGSPFVMTFERLGIKTAAGIINFV 300 Query: 301 VITAALSSCNGGIFSTGRMLYSLAQNGQAPAGFAKTSTNGVPRRALLLSIAALLLGVLLN 360 VITAALSSCNGGIFSTGRMLYSLAQNGQAPAGFAKTS NGVPRRALLLSI ALLLGVLLN Sbjct: 301 VITAALSSCNGGIFSTGRMLYSLAQNGQAPAGFAKTSNNGVPRRALLLSIGALLLGVLLN 360 Query: 361 YLVPEKVFVWVTSIATFGAIWTWVMILLAQLKFRKSLSASERAALKYRMWLYPVSSYLAL 420 YLVPEKVFVWVT+IATFGAIWTWVMILLAQLKFRK LSASE A LKYRMWLYPVSSYLAL Sbjct: 361 YLVPEKVFVWVTAIATFGAIWTWVMILLAQLKFRKGLSASEAAGLKYRMWLYPVSSYLAL 420 Query: 421 AFLVLVVGLMAYFPDTRVALYVGPAFLVLLTVLFYTFKLQPTGDVQRAVRSAS 473 AFLVLVVGLMAYFPDTRVALYVGPAFLVLLTVLFY FKLQPT Q A RS S Sbjct: 421 AFLVLVVGLMAYFPDTRVALYVGPAFLVLLTVLFYVFKLQPTNVSQGAARSVS 473 Lambda K H 0.328 0.142 0.444 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 978 Number of extensions: 39 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 473 Length of database: 473 Length adjustment: 33 Effective length of query: 440 Effective length of database: 440 Effective search space: 193600 Effective search space used: 193600 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory