Align Alpha-ketoglutaric semialdehyde dehydrogenase; alphaKGSA dehydrogenase; 2,5-dioxovalerate dehydrogenase; EC 1.2.1.26 (characterized)
to candidate PfGW456L13_3604 Aldehyde dehydrogenase (EC 1.2.1.3)
Query= SwissProt::P42236 (488 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_3604 Length = 490 Score = 319 bits (818), Expect = 1e-91 Identities = 188/476 (39%), Positives = 270/476 (56%), Gaps = 9/476 (1%) Query: 13 FINGEWVKSQSGDMVKVENPADVNDIVGYVQNSTAEDVERAVTAANEA-KTAWRKLTGAE 71 +INGEWV G + V +PA V T EDV+ AV AA A W + +GAE Sbjct: 6 YINGEWVSPDLGGYLDVIDPA-TEQAFHRVAAGTEEDVDHAVRAARRAFDNGWGQTSGAE 64 Query: 72 RGQYLYKTADIMEQRLEEIAACATREMGKTLPEAKGETARGIAILRYYAGEGMRKTGDVI 131 RGQ+L AD +E + +A R+ GK LPEA+ + IA RYYAG Sbjct: 65 RGQWLEALADELESGQQALAELEVRDNGKPLPEAQWDIGDAIACFRYYAGLARELDQQQD 124 Query: 132 PSTDKDALMFTTRV---PLGVVGVISPWNFPVAIPIWKMAPALVYGNTVVIKPATETAVT 188 F R+ P+GV G I PWN+P+ + WK+APAL G TVV+KP+ T +T Sbjct: 125 QPLALPDARFCCRIRHEPIGVAGQIIPWNYPLLMAAWKVAPALAAGATVVLKPSELTPLT 184 Query: 189 CAKIIACFEEAGLPAGVINLVTGPGSVVGQGLAEHDGVNAVTFTGSNQVGKIIGQAALAR 248 ++ A + GLPAGV+NLVTG G+ G L EH GV+ + FTGS G I AA Sbjct: 185 ALELAAAADRIGLPAGVLNLVTGLGADAGSPLTEHPGVDKLAFTGSVPTGAKIMSAAARD 244 Query: 249 GAKYQLEMGGKNPVIVADDADLEAAAEAVITGAFRSTGQKCTATSRVIVQSGIYERFKEK 308 LE+GGK+ IV DDAD+EAA E ++ G F + GQ C+ATSR++VQ I R E+ Sbjct: 245 IKNISLELGGKSAFIVFDDADVEAAVEWILFGIFWNQGQVCSATSRLLVQETIAARLIER 304 Query: 309 LLQRTKDITIGDSLKEDVWMGPIASKNQLDNCLSYIEKGKQEGASLLIGGEKLENGKYQN 368 L++ T+ I+IG ++ V +GP+ S+ Q D L +I++G GA LL GG + + Sbjct: 305 LVEETRKISIGPGMQPGVLLGPLVSQGQYDKVLGFIDQGLASGARLLTGGRR--PAHLRE 362 Query: 369 GYYVQPAIFDNVTSEMTIAQEEIFGPVIALIKVDSIEEALNIANDVKFGLSASIFTENIG 428 GY+V+PAIFD + +EE+FGPV+ + + + E+AL +AN +FGL+A++ + ++ Sbjct: 363 GYFVEPAIFDEPGHSSILWREEVFGPVLCIKRFKTEEQALQMANASRFGLAAAVMSADLQ 422 Query: 429 RMLSFIDEIDAGLVRINAESAGVELQAPFGGMKQSSSHSREQGEAAKDFFTAIKTV 484 R +++ AG+V +N S ++AP+GGMK S RE G+ + +K V Sbjct: 423 RTARVANQLRAGIVWVNC-SQPTFVEAPWGGMKHSGI-GRELGQWGLHNYLEVKQV 476 Lambda K H 0.315 0.132 0.374 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 569 Number of extensions: 21 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 488 Length of database: 490 Length adjustment: 34 Effective length of query: 454 Effective length of database: 456 Effective search space: 207024 Effective search space used: 207024 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.5 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory