Align Xylose/arabinose import ATP-binding protein XylG; EC 7.5.2.13 (characterized, see rationale)
to candidate PfGW456L13_2121 L-arabinose transport ATP-binding protein AraG (TC 3.A.1.2.2)
Query= uniprot:P0DTT6 (251 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_2121 Length = 514 Score = 127 bits (318), Expect = 6e-34 Identities = 72/216 (33%), Positives = 122/216 (56%), Gaps = 1/216 (0%) Query: 5 LEIRDVHKSFGAVKALDGVSMEINKGEVVALLGDNGAGKSTLIKIISGYHKPDRGDLVFE 64 L + K+F VKALD +S + G+V AL+G+NGAGKSTL+KI+ G + P G L Sbjct: 16 LRFNGIGKTFPGVKALDNISFVAHPGQVHALMGENGAGKSTLLKILGGAYTPCSGALQIG 75 Query: 65 GKKVIFNSPNDARSLGIETIYQDLALIPDLPIYYNIFLAREVTNKIFLNKKKMMEESKKL 124 + + F S D+ G+ I+Q+L L+P++ + N+FL + +N+ + +++ Sbjct: 76 ERTMDFKSTADSIGSGVAVIHQELHLVPEMTVAENLFLGHLPASFGLINRSTLRQQALAC 135 Query: 125 LDSLQIRIPDINMKVENLSGGQRQAVAVARAVYFSAKMILMDEPTAALSVVEARKVLELA 184 L L I D KV LS GQRQ V +A+A+ A +I DEPT++LS E +++ + Sbjct: 136 LKGLADEI-DPQEKVGRLSLGQRQLVEIAKALSRGAHVIAFDEPTSSLSAREIDRLMAII 194 Query: 185 RNLKKKGLGVLIITHNIIQGYEVADRIYVLDRGKII 220 L+ +G VL ++H + + + + + + V G+ + Sbjct: 195 GRLRDEGKVVLYVSHRMEEVFRICNAVTVFKDGRYV 230 Score = 101 bits (252), Expect = 3e-26 Identities = 56/220 (25%), Positives = 118/220 (53%), Gaps = 6/220 (2%) Query: 23 VSMEINKGEVVALLGDNGAGKSTLIKIISGYHKPDRGDLVFEGKKVIFNSPNDARSLGIE 82 VS E++KGE++ L G GAG++ L++++SG + G L G ++ SP DA + GI Sbjct: 283 VSFEVHKGEILGLFGLVGAGRTELLRLLSGLARHSAGQLKLRGHELKLRSPRDAIAAGIL 342 Query: 83 TIYQDL---ALIPDLPIYYNIFLAREVTNKIF---LNKKKMMEESKKLLDSLQIRIPDIN 136 +D ++P + NI ++ + F L + +++ + +L+++ P+ Sbjct: 343 LCPEDRKKEGILPLASVAENINISARGAHSTFGCLLRGLWEKDNAEQQIKALKVKTPNAA 402 Query: 137 MKVENLSGGQRQAVAVARAVYFSAKMILMDEPTAALSVVEARKVLELARNLKKKGLGVLI 196 K+ LSGG +Q + R + K++L+DEPT + + ++ ++ NL +G+ V++ Sbjct: 403 QKIMYLSGGNQQKAILGRWLSMPMKVLLLDEPTRGIDIGAKAEIYQIIHNLAAEGIAVIV 462 Query: 197 ITHNIIQGYEVADRIYVLDRGKIIFHKKKEETNVEEITEV 236 ++ ++++ ++DRI VL G + +E+ N + ++ Sbjct: 463 VSSDLMEVMGISDRILVLCEGALRGELSREQANESNLLQL 502 Lambda K H 0.318 0.137 0.371 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 260 Number of extensions: 12 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 251 Length of database: 514 Length adjustment: 29 Effective length of query: 222 Effective length of database: 485 Effective search space: 107670 Effective search space used: 107670 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 49 (23.5 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory