Align Probable 2-ketoarginine decarboxylase AruI; 2-oxo-5-guanidinopentanoate decarboxylase; 5-guanidino-2-oxopentanoate decarboxylase; EC 4.1.1.75 (characterized)
to candidate PfGW456L13_1794 Acetolactate synthase, large subunit (EC 2.2.1.6)
Query= SwissProt::Q9HUI8 (559 letters) >lcl|FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_1794 Acetolactate synthase, large subunit (EC 2.2.1.6) Length = 545 Score = 436 bits (1121), Expect = e-126 Identities = 252/535 (47%), Positives = 329/535 (61%), Gaps = 15/535 (2%) Query: 31 TAGQALVRLLANYGVDTVFGIPGVHTLELYRGLPGSGIRHVLTRHEQGAGFMADGYARVS 90 T G+ LV+LL NYGV+ VFGIPGVHT+ELYRGL S I HV RHEQGAGFMADGYAR S Sbjct: 3 TCGEVLVKLLENYGVEQVFGIPGVHTVELYRGLARSSINHVTPRHEQGAGFMADGYARTS 62 Query: 91 GKPGVCFVITGPGVTNVATAIGQAYADSVPLLVISSVNHSASLGKGWGCLHETQDQRAMT 150 GKPGVCF+ITGPG+TN+ TA+GQAYADS+P+LVISSV + LG G G LHE +Q A+ Sbjct: 63 GKPGVCFIITGPGMTNITTAMGQAYADSIPMLVISSVQSRSQLGGGRGKLHELPNQGALC 122 Query: 151 APITAFSALALSPEQLPELIARAYAVFDSERPRPVHISIPLDVLAAPVAHDWSAAVARRP 210 A + AFS +S +LP ++ARA+A+F + RPRPVHI IPLDVL A D A++ Sbjct: 123 AGVAAFSHTLMSASELPGVLARAFALFQAGRPRPVHIEIPLDVLVEE-ADDLLASLPVNI 181 Query: 211 GRGVPCSEALRAAAERLAAARRPMLIAGGGALAAGEALAALSERLAAPLFTSVAGKGLLP 270 R A+ AE LA A+RP+++AGGGA+ A L L+E L AP+ ++ KG+L Sbjct: 182 DRAGASPSAVSRMAELLAGAKRPLILAGGGAIDAAVELTELAELLDAPVALTINAKGMLA 241 Query: 271 PDAPLNAGASLCVAPGWEMIAEADLVLAVGTEMADTDF---WRERLPLSGELIRVDIDPR 327 PL G++ + ++AEAD+VLA+GTE+A+TD+ + + G+L+RVDIDP Sbjct: 242 SGHPLLIGSTQSLVATRALVAEADVVLAIGTELAETDYDVTFAGGFEIPGKLLRVDIDPD 301 Query: 328 KFNDFYPSAVALRGDARQTLEALLVRLPQEA---RDSAPAAARVARLRAEIRAAHAPLQA 384 + YP VAL D+R +ALL L ++ R + R ARLR ++ A Sbjct: 302 QTVRNYPPHVALVADSRNAAQALLSALSHKSLAERRNDWGQVRAARLREDLAATWDAPTL 361 Query: 385 LHQAILDRIAAALPADAFVSTDMTQLAYTGNYAFASRAPRSWLH-PTGYGTLGYGLPAGI 443 L+ + LP FV D TQ YTGN F PR W + TGYGTLGY LPA I Sbjct: 362 AQTRFLETVLQELPDAVFVG-DSTQPVYTGNLTFNPERPRRWFNSSTGYGTLGYALPAAI 420 Query: 444 GAKL-----GAPQRPGLVLVGDGGFLYTAQELATASEELDSPLVVLLWNNDALGQIRDDM 498 GA L G + P + L+GDGG +T ELA+A E +P++VLLWNN +I+ M Sbjct: 421 GAWLGGRIEGGARPPVVCLIGDGGLQFTLPELASA-VEARTPVIVLLWNNQGYEEIKKYM 479 Query: 499 LGLDIEPVGVLPRNPDFALLGRAYGCAVRQPQDLDELERDLRAGFGQSGVTLIEL 553 + IEPVGV PDF + +A GCA +++L LR + G TLIE+ Sbjct: 480 VNRAIEPVGVDIYTPDFIGVAKALGCAAEAVSSVEQLRGALRVATDRQGPTLIEI 534 Lambda K H 0.321 0.136 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 785 Number of extensions: 33 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 559 Length of database: 545 Length adjustment: 36 Effective length of query: 523 Effective length of database: 509 Effective search space: 266207 Effective search space used: 266207 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory