Align 4-guanidinobutyraldehyde dehydrogenase (EC 1.2.1.54) (characterized)
to candidate PfGW456L13_1397 Aldehyde dehydrogenase (EC 1.2.1.3)
Query= metacyc::MONOMER-11560 (497 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_1397 Length = 496 Score = 548 bits (1411), Expect = e-160 Identities = 259/489 (52%), Positives = 355/489 (72%) Query: 9 WEQRAQQLKIEGRAFINGEYTDAVSGETFECLSPVDGRFLAKVASCDLADANRAVENARA 68 W+++A L+ +A I+G+ A SG+TF ++P + LA VA+C D N AV NAR Sbjct: 7 WQRKAASLRFPDQAVIDGQRRPAQSGQTFAAINPATSQCLANVAACGEEDVNAAVHNARQ 66 Query: 69 TFNSGVWSQLAPAKRKAKLIRFADLLRKNVEELALLETLDMGKPIGDSSSIDIPGAAQAI 128 F +G W+ +P +RK L+R ADL+ +N EELALL++L+MGKP+ D+ +ID+PGAA Sbjct: 67 VFEAGTWAARSPTERKQVLLRLADLILENREELALLDSLNMGKPVADAYNIDVPGAAGVF 126 Query: 129 HWTAEAIDKVYDEVAPTPHDQLGLVTREPVGVVGAIVPWNFPLLMACWKLGPALATGNSV 188 W AE++DK+YD+VAP+ + L +TRE +GVV A+VPWNFPL MA WKL PALA GNSV Sbjct: 127 RWYAESLDKLYDQVAPSAQNVLATITREALGVVAAVVPWNFPLDMAAWKLAPALAAGNSV 186 Query: 189 VLKPSEKSPLTAIRIAQLAIEAGIPAGVLNVLPGYGHTVGKALALHMDVDTLVFTGSTKI 248 +LKP+E+SP +A+R+A+LA+EAG+PAGVLNVLPG G GKAL LH DVD LVFTGST++ Sbjct: 187 ILKPAEQSPFSALRLAELALEAGVPAGVLNVLPGLGEQTGKALGLHPDVDCLVFTGSTEV 246 Query: 249 AKQLMVYAGESNMKRIWLEAGGKSPNIVFADAPDLQAAAEAAASAIAFNQGEVCTAGSRL 308 K M Y+ +SN+K++WLE GGKS N+VFAD DL AAE AA I FNQGEVC+A SRL Sbjct: 247 GKYFMQYSAQSNLKQVWLECGGKSANLVFADCQDLDLAAEKAAFGIFFNQGEVCSANSRL 306 Query: 309 LVERSIKDKFLPMVVEALKGWKPGNPLDPQTTVGALVDTQQMNTVLSYIEAGHKDGAKLL 368 LV+RSI D+F+ + + W PG+PLDP + GA+VD++Q ++ +I+ + GA + Sbjct: 307 LVQRSIHDEFVERLKAQAERWLPGDPLDPSSAAGAIVDSRQTARIMKFIQQAEQQGATRI 366 Query: 369 AGGKRTLEETGGTYVEPTIFDGVTNAMRIAQEEIFGPVLSVIAFDTAEEAVAIANDTPYG 428 GG++++ +++PTIF GVT M + ++E+FGPVL+V AFD A+ +AND+ YG Sbjct: 367 CGGRQSIINGSDNFIQPTIFTGVTPDMPLFRDEVFGPVLAVTAFDDEAHALQLANDSVYG 426 Query: 429 LAAGIWTSDISKAHKTARAVRAGSVWVNQYDGGDMTAPFGGFKQSGNGRDKSLHALEKYT 488 LAA +WT D+++AH+ AR +RAG+V VN D D+T PFGG KQSG GRD SLH+ +KYT Sbjct: 427 LAASLWTDDLNRAHRVARQLRAGTVSVNSVDALDVTVPFGGGKQSGFGRDLSLHSFDKYT 486 Query: 489 ELKATWIKL 497 +LK TW +L Sbjct: 487 QLKTTWFQL 495 Lambda K H 0.316 0.132 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 644 Number of extensions: 21 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 497 Length of database: 496 Length adjustment: 34 Effective length of query: 463 Effective length of database: 462 Effective search space: 213906 Effective search space used: 213906 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory