Align C4-dicarboxylic acid transporter DauA; Dicarboxylic acid uptake system A (characterized)
to candidate PfGW456L13_643 Sulfate permease
Query= SwissProt::P0AFR2 (559 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_643 Length = 522 Score = 212 bits (539), Expect = 3e-59 Identities = 158/504 (31%), Positives = 254/504 (50%), Gaps = 39/504 (7%) Query: 20 WKEKYTAARFTRDLIAGITVGIIAIPLAMALAIGSGVAPQYGLYTAAVAGIVIALTGGSR 79 W + T A RDLI G++ I+A+P ++A A+ +G+ P+YGLY A + ++ L G S Sbjct: 15 WLPRQTRASVGRDLIVGLSGAILALPQSIAYALIAGLPPEYGLYAAIIPVLIACLWGSSW 74 Query: 80 FSVSGPTAAFVVILY--------PVSQQFGLAGLLVATLLSGIFLILMGLARFGRLIEYI 131 + GPTAA ++LY P SQ + + +L+ T L+GIF L+GL RFG L+ ++ Sbjct: 75 HLICGPTAAISIVLYASVSPLAVPASQDYVML-ILLLTFLAGIFQWLLGLLRFGALVNFV 133 Query: 132 PVSVTLGFTSGIGITIGTMQIKDFLGLQMAHVPEHYLQKVGALFMALPTINVGDAAIGIV 191 SV LGFT G + I Q+ + LGL + L L L ++ A+G+ Sbjct: 134 SHSVVLGFTLGAAVVIAIGQLPNLLGLDLPSQATA-LDSFITLLRHLGEMDKPSLALGLA 192 Query: 192 TLGILVFWPRLGIRLPGHLPALLAGCAVMGIVNLLGGHVATIGSQFHYVLADGSQGNGIP 251 T+ + V L R P L L+ G ++ + + GHV + + Sbjct: 193 TVVVGVILKLLLPRWPTLLITLILGGLLVWLWPSMFGHVQLVSAF-------------TG 239 Query: 252 QLLPQLVLPWDLPNSEFTLTWDSIRTLLPAAFSMAMLGAIESLLCAVVLDGMTGTKHKAN 311 +L P LP DL D I LLP+A ++ MLG + SL A + + AN Sbjct: 240 KLPPFSPLPLDL---------DLILRLLPSAVAVGMLGLVTSLSIARSISARSQQLLDAN 290 Query: 312 SELVGQGLGNIIAPFFGGITATAAIARSAANVRAGATSPISAVIHSILVILALLVLAPLL 371 E+ QGL NI+ FF G + + RS + AGA SP++ + ++ V L + A L+ Sbjct: 291 QEVRAQGLSNIVGAFFSGSLSAGSFTRSGLSYEAGACSPLAGIFSALWVALFAIFGASLI 350 Query: 372 SWLPLSAMAALLLMVAWNMSEAHKVVDLLRHAPKDDIIVMLLCMSLTVLFDMVIAISVGI 431 + +P+ AMA +L++AW + + + LLR + + +++ L C++ T+L ++ AI G Sbjct: 351 AHIPIPAMAGSILLIAWGLVDHRGIRALLRVSRAEFVVMALTCVA-TLLLELQTAIYAG- 408 Query: 432 VLASLLFMRRIARMTRLAPVVVDVPDDVLVLRVIGPLFFAAAEGLFTDLESRLEGKRIVI 491 VLASL F + R+ V D +LRV G +FF A+ L L+ R+ G R+VI Sbjct: 409 VLASLFFYLKRTSQPRVQHVRDGEED---ILRVGGSIFFGASHYLQVRLQ-RMHGARVVI 464 Query: 492 LKWDAVPVLDAGGLDAFQRFVKRL 515 + + +D G++ + +RL Sbjct: 465 -EAQQINFIDYSGVEMLHQEARRL 487 Lambda K H 0.328 0.142 0.425 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 654 Number of extensions: 38 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 559 Length of database: 522 Length adjustment: 35 Effective length of query: 524 Effective length of database: 487 Effective search space: 255188 Effective search space used: 255188 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory