Align Aspartate-proton symporter; L-aspartate transporter (characterized)
to candidate PfGW456L13_3582 Aspartate-proton symporter
Query= SwissProt::O07002 (520 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_3582 Length = 548 Score = 673 bits (1736), Expect = 0.0 Identities = 301/512 (58%), Positives = 410/512 (80%), Gaps = 1/512 (0%) Query: 1 MSKQGNFQKSMSLFDLILIGMGAIFGSAWLFAVSNVASKAGPSGAFSWILGGAIILLIGL 60 MS QG F+K +SL DL IG+GAIFGS WLFA S+V++ AGP+G FSW+LGG +LL+G+ Sbjct: 1 MSGQGKFKKQLSLIDLTFIGLGAIFGSGWLFAASHVSAIAGPAGIFSWLLGGFAVLLLGI 60 Query: 61 VYAELGAALPRTGGIIRYPVYSHGHLVGYLISFVTIVAYTSLISIEVTAVRQYVAYWFPG 120 VY ELGAALPR GG++RYPVYSHG L+GYL+ F+T++A++SL++IEV A RQY A WFP Sbjct: 61 VYCELGAALPRAGGVVRYPVYSHGPLLGYLMGFITLIAFSSLVAIEVVAARQYAAAWFPA 120 Query: 121 LTIKGSDSPTISGWILQFALLCLFFLLNYWSVKTFAKANFIISIFKYIVPITIIIVLIFH 180 LT GS +PT GW++QF LLCLFF+LNY+SVKTFAKAN +IS+FK+IVP+ +I VL Sbjct: 121 LTQAGSSNPTAIGWLVQFGLLCLFFMLNYYSVKTFAKANNLISMFKFIVPLLVIGVLFTF 180 Query: 181 FQPENLSVQGFAPFGFTGIQAAISTGGVMFAYLGLHPIVSVAGEVQNPKRNIPIALIICI 240 F+PEN QGF PFG +G++ A+S GG++FAYLGL PI+SVA EV+NP+R IPIALI+ + Sbjct: 181 FKPENFQSQGFMPFGLSGVEMAVSAGGIIFAYLGLTPIISVASEVKNPQRTIPIALILSV 240 Query: 241 IVSTIIYTVLQVTFIGAIPTETLKHGWPAIGREFSLPFKDIAVMLGLGWLATLVILDAIL 300 ++ST IY +LQV F+G +PTE L +GW + +E +LP++DIA+ LG+GWLA LV+ DA++ Sbjct: 241 LLSTAIYVLLQVAFLGGVPTEMLANGWAGVAKELALPYRDIALALGVGWLAYLVVADAVI 300 Query: 301 SPGGNGNIFMNTTSRLVYAWARNGTLFGIFSKVNKDTGTPRASLWLSFALSIFWTLPFPS 360 SP G GNI+MN T R++Y WA+ GT F +F+++++ +G PR +LWL+FALS+FWTLPFPS Sbjct: 301 SPSGCGNIYMNATPRVIYGWAQTGTFFKVFTRIDEKSGIPRPALWLTFALSVFWTLPFPS 360 Query: 361 WNALVNVCSVALILSYAIAPISSAALRVNAKDLNRPFYLKGMSIIGPLSFIFTAFIVYWS 420 W AL+NV S AL+LSYA+AP+S AALR NA D+ RPF +K M ++GP+SFI A IVYWS Sbjct: 361 WEALINVVSAALVLSYAVAPVSVAALRRNAPDMPRPFKVKRMGVLGPVSFIIAALIVYWS 420 Query: 421 GWKTVSWLLGSQLVMFLIYLCFSKYTPKEDVSLAQQLKSAWWLIGFYIMMLIFSYIGSFG 480 GW TVSWLLG Q++MF++YL ++ P + +SLAQQ++S+ WLIGFY + ++ S++GSFG Sbjct: 421 GWSTVSWLLGLQILMFVVYLLCGRFVPTQHLSLAQQVRSSAWLIGFYAVTIVLSWLGSFG 480 Query: 481 HGLGIISNPVDLILVAIGSLAIYYWAKYTGLP 512 G+G++++P D ++VA ++ IYYW TG+P Sbjct: 481 -GMGVLTHPFDTVVVAACAMGIYYWGAATGVP 511 Lambda K H 0.328 0.143 0.451 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1043 Number of extensions: 47 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 548 Length adjustment: 35 Effective length of query: 485 Effective length of database: 513 Effective search space: 248805 Effective search space used: 248805 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory