Align deoxynucleoside transporter, ATPase component (characterized)
to candidate PfGW456L13_3911 Ribose ABC transport system, ATP-binding protein RbsA (TC 3.A.1.2.1)
Query= reanno::Burk376:H281DRAFT_01113 (515 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_3911 Length = 517 Score = 298 bits (764), Expect = 2e-85 Identities = 181/496 (36%), Positives = 280/496 (56%), Gaps = 11/496 (2%) Query: 16 LEVVGVHKRFTGVHALRGVSLSFQRGQIYHLLGENGCGKSTLIKIISGAQPPDEGQLVIE 75 L V G+ K + L G+ L+ RG++ L GENG GKSTL KII G P GQ+ + Sbjct: 10 LSVSGIGKTYAQP-VLAGIDLTLMRGEVLALTGENGAGKSTLSKIIGGLVTPTTGQMQYQ 68 Query: 76 GVPHARLSALEALAAGIETVYQDLSLLPNMSVAENVALTSELATHEGRLARTFDRRVLAA 135 G + S +A A GI V Q+L+LLP +SVAEN+ L + L + G ++R + L Sbjct: 69 GQDYRPGSRAQAEALGIRMVMQELNLLPTLSVAENLFLDN-LPSKGGWISR----KQLRK 123 Query: 136 TAARALEAVGLPGNSEFQSTLIEQLPLATRQLVAIARAIASEAKFVIMDEPTTSLTQKEV 195 A A+ VGL TL+ +L + +Q+V IAR + + +I+DEPT LT +EV Sbjct: 124 AAIEAMAHVGLDAIDP--DTLVGELGIGHQQMVEIARNLIGDCHVLILDEPTAMLTAREV 181 Query: 196 DNLIAVLANLRAQGVTVLFVSHKLDECYAIGGEVIVLRDGQKMAQGPIAEFTKAQISELM 255 + L + L+++GV+++++SH+L+E + + VLRDG + P+A + Q+ LM Sbjct: 182 EMLFEQITRLQSRGVSIIYISHRLEELARVAQRIAVLRDGNLVCVEPMANYNSEQLVTLM 241 Query: 256 TGRHLSNERYRESAHAQDIVLDVRGFTRAGQFSDVSFKLHGGEILGVTGLLDSGRNELAR 315 GR L + VL V G +R+ + DVSF++ GEI G++GL+ +GR EL R Sbjct: 242 VGRELGEHIDMGARKIGAPVLTVNGLSRSDKVRDVSFEVRAGEIFGISGLIGAGRTELLR 301 Query: 316 ALAGVAPAQSGDVLLDG--QQIALRTPSDAKRHRIGYVPEDRLNEGLFLDKPIRDNVITA 373 + G A SG + L Q I +R+P DA H I + EDR EGL L + I N+ Sbjct: 302 LIFGADIADSGTIALGAPAQVINVRSPVDAVGHGIALITEDRKGEGLLLTQSIGANIALG 361 Query: 374 MISSLRDRFGQIDRTRAQALAEQTVKELQIATPGVDKPVQSLSGGNQQRVLIGRWLAIDP 433 + + G +D + +ALA++ + ++I + G + V LSGGNQQ+V+IGRWL D Sbjct: 362 NMPGISGA-GFVDNDKERALAQRQIDAMRIRSSGPAQLVSELSGGNQQKVVIGRWLERDC 420 Query: 434 RVLILHGPTVGVDVGSKDIIYRIMQRLSQRGIGIILISDDLPELLQNCDRILMMKKGHVS 493 VL+ PT G+DVG+K IY ++ L+++G ++++S DL EL+ CDRI ++ G + Sbjct: 421 SVLLFDEPTRGIDVGAKFDIYNLLGELTRQGKALVVVSSDLRELMLICDRIGVLSAGSLI 480 Query: 494 AEYRADELSEADLYHA 509 + D ++ +L A Sbjct: 481 DTFDRDSWTQDELLAA 496 Lambda K H 0.319 0.135 0.376 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 594 Number of extensions: 28 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 515 Length of database: 517 Length adjustment: 35 Effective length of query: 480 Effective length of database: 482 Effective search space: 231360 Effective search space used: 231360 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory