GapMind for catabolism of small carbon sources

 

Aligments for a candidate for fruK in Pseudomonas fluorescens GW456-L13

Align Fructose import ATP-binding protein FruK; EC 7.5.2.- (characterized)
to candidate PfGW456L13_2121 L-arabinose transport ATP-binding protein AraG (TC 3.A.1.2.2)

Query= SwissProt::Q8G847
         (513 letters)



>lcl|FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_2121 L-arabinose
           transport ATP-binding protein AraG (TC 3.A.1.2.2)
          Length = 514

 Score =  310 bits (795), Expect = 6e-89
 Identities = 177/473 (37%), Positives = 287/473 (60%), Gaps = 18/473 (3%)

Query: 12  GITIEFPGVKALDGVDLTLYPGEVHALMGENGAGKSTMIKALTGVYKINAGSIMVDGKPQ 71
           GI   FPGVKALD +    +PG+VHALMGENGAGKST++K L G Y   +G++ +  +  
Sbjct: 20  GIGKTFPGVKALDNISFVAHPGQVHALMGENGAGKSTLLKILGGAYTPCSGALQIGERTM 79

Query: 72  QFNGTLDAQNAGIATVYQEVNLCTNLSVGENVMLGHEKRGPFGIDWKKTHEAAKKYLAQM 131
            F  T D+  +G+A ++QE++L   ++V EN+ LGH     FG+  + T         + 
Sbjct: 80  DFKSTADSIGSGVAVIHQELHLVPEMTVAENLFLGH-LPASFGLINRSTLRQQALACLKG 138

Query: 132 GLESIDPHTPLSSISIAMQQLVAIARAMVINAKVLILDEPTSSLDANEVRDLFAIMRKVR 191
             + IDP   +  +S+  +QLV IA+A+   A V+  DEPTSSL A E+  L AI+ ++R
Sbjct: 139 LADEIDPQEKVGRLSLGQRQLVEIAKALSRGAHVIAFDEPTSSLSAREIDRLMAIIGRLR 198

Query: 192 DSGVAILFVSHFLDQIYEITDRLTILRNGQFIK--EVMTKDTPRDELIGMMIGKSAAELS 249
           D G  +L+VSH +++++ I + +T+ ++G++++  + M++ T  D+L+  M+G+   ++ 
Sbjct: 199 DEGKVVLYVSHRMEEVFRICNAVTVFKDGRYVRTFDDMSQLT-HDQLVTCMVGRDIQDI- 256

Query: 250 QIGAKKARREITPGEKPIVDVK--GLGKKGTINPVDVDIYKGEVVGFAGLLGSGRTELGR 307
                    +  P ++  V +K  GL   G   PV  +++KGE++G  GL+G+GRTEL R
Sbjct: 257 --------YDYRPRQRGAVALKVDGLLGPGLREPVSFEVHKGEILGLFGLVGAGRTELLR 308

Query: 308 LLYGADKPDSGTYTLNGKKVNISDPYTALKNKIAYSTENRRDEGIIGDLTVRQNILIALQ 367
           LL G  +  +G   L G ++ +  P  A+   I    E+R+ EGI+   +V +NI I+ +
Sbjct: 309 LLSGLARHSAGQLKLRGHELKLRSPRDAIAAGILLCPEDRKKEGILPLASVAENINISAR 368

Query: 368 ATRGMFKPIPKK--EADAIVDKYMKELNVRPADPDRPVKNLSGGNQQKVLIGRWLATHPE 425
                F  + +   E D   ++ +K L V+  +  + +  LSGGNQQK ++GRWL+   +
Sbjct: 369 GAHSTFGCLLRGLWEKDN-AEQQIKALKVKTPNAAQKIMYLSGGNQQKAILGRWLSMPMK 427

Query: 426 LLILDEPTRGIDIGAKAEIQQVVLDLASQGMGVVFISSELEEVVRLSDDIEVL 478
           +L+LDEPTRGIDIGAKAEI Q++ +LA++G+ V+ +SS+L EV+ +SD I VL
Sbjct: 428 VLLLDEPTRGIDIGAKAEIYQIIHNLAAEGIAVIVVSSDLMEVMGISDRILVL 480



 Score = 76.6 bits (187), Expect = 2e-18
 Identities = 56/238 (23%), Positives = 116/238 (48%), Gaps = 12/238 (5%)

Query: 18  PGVKALDGVDLTLYPGEVHALMGENGAGKSTMIKALTGVYKINAGSIMVDGKPQQFNGTL 77
           PG++  + V   ++ GE+  L G  GAG++ +++ L+G+ + +AG + + G   +     
Sbjct: 277 PGLR--EPVSFEVHKGEILGLFGLVGAGRTELLRLLSGLARHSAGQLKLRGHELKLRSPR 334

Query: 78  DAQNAGIATVYQE---VNLCTNLSVGENVMLGHE-KRGPFGID----WKKTHEAAKKYLA 129
           DA  AGI    ++     +    SV EN+ +        FG      W+K +  A++ + 
Sbjct: 335 DAIAAGILLCPEDRKKEGILPLASVAENINISARGAHSTFGCLLRGLWEKDN--AEQQIK 392

Query: 130 QMGLESIDPHTPLSSISIAMQQLVAIARAMVINAKVLILDEPTSSLDANEVRDLFAIMRK 189
            + +++ +    +  +S   QQ   + R + +  KVL+LDEPT  +D     +++ I+  
Sbjct: 393 ALKVKTPNAAQKIMYLSGGNQQKAILGRWLSMPMKVLLLDEPTRGIDIGAKAEIYQIIHN 452

Query: 190 VRDSGVAILFVSHFLDQIYEITDRLTILRNGQFIKEVMTKDTPRDELIGMMIGKSAAE 247
           +   G+A++ VS  L ++  I+DR+ +L  G    E+  +      L+ + + +  A+
Sbjct: 453 LAAEGIAVIVVSSDLMEVMGISDRILVLCEGALRGELSREQANESNLLQLALPRQRAD 510



 Score = 63.5 bits (153), Expect = 2e-14
 Identities = 48/223 (21%), Positives = 105/223 (47%), Gaps = 10/223 (4%)

Query: 287 YKGEVVGFAGLLGSGRTELGRLLYGADKPDSGTYTLNGKKVNISDPYTALKNKIAYSTEN 346
           + G+V    G  G+G++ L ++L GA  P SG   +  + ++      ++ + +A   + 
Sbjct: 39  HPGQVHALMGENGAGKSTLLKILGGAYTPCSGALQIGERTMDFKSTADSIGSGVAVIHQE 98

Query: 347 RRDEGIIGDLTVRQNILIA-LQATRGMF-KPIPKKEADAIVDKYMKELNVRPADPDRPVK 404
                ++ ++TV +N+ +  L A+ G+  +   +++A A +     E+     DP   V 
Sbjct: 99  LH---LVPEMTVAENLFLGHLPASFGLINRSTLRQQALACLKGLADEI-----DPQEKVG 150

Query: 405 NLSGGNQQKVLIGRWLATHPELLILDEPTRGIDIGAKAEIQQVVLDLASQGMGVVFISSE 464
            LS G +Q V I + L+    ++  DEPT  +       +  ++  L  +G  V+++S  
Sbjct: 151 RLSLGQRQLVEIAKALSRGAHVIAFDEPTSSLSAREIDRLMAIIGRLRDEGKVVLYVSHR 210

Query: 465 LEEVVRLSDDIEVLKDRHKIAEIENDDTVSQATIVETIANTNV 507
           +EEV R+ + + V KD   +   ++   ++   +V  +   ++
Sbjct: 211 MEEVFRICNAVTVFKDGRYVRTFDDMSQLTHDQLVTCMVGRDI 253


Lambda     K      H
   0.316    0.135    0.376 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 617
Number of extensions: 24
Number of successful extensions: 8
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 3
Number of HSP's successfully gapped: 3
Length of query: 513
Length of database: 514
Length adjustment: 35
Effective length of query: 478
Effective length of database: 479
Effective search space:   228962
Effective search space used:   228962
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 52 (24.6 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer. Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory