GapMind for catabolism of small carbon sources

 

Alignments for a candidate for BPHYT_RS16930 in Pseudomonas fluorescens GW456-L13

Align Arabinose import ATP-binding protein AraG; EC 7.5.2.12 (characterized, see rationale)
to candidate PfGW456L13_3911 Ribose ABC transport system, ATP-binding protein RbsA (TC 3.A.1.2.1)

Query= uniprot:A0A165ZSX8
         (514 letters)



>FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_3911
          Length = 517

 Score =  363 bits (933), Expect = e-105
 Identities = 212/500 (42%), Positives = 299/500 (59%), Gaps = 6/500 (1%)

Query: 16  LRFNGIGKSFPGVQALANISFVAHPGQVHALMGENGAGKSTLLKILGGAYIPSSGDLQIG 75
           L  +GIGK++     LA I      G+V AL GENGAGKSTL KI+GG   P++G +Q  
Sbjct: 10  LSVSGIGKTY-AQPVLAGIDLTLMRGEVLALTGENGAGKSTLSKIIGGLVTPTTGQMQYQ 68

Query: 76  EQTMAFKGTADSIASGVAVIHQELHLVPEMTVAENLFLGHLPARFGLVNRGVLRQQALTL 135
            Q       A + A G+ ++ QEL+L+P ++VAENLFL +LP++ G ++R  LR+ A+  
Sbjct: 69  GQDYRPGSRAQAEALGIRMVMQELNLLPTLSVAENLFLDNLPSKGGWISRKQLRKAAIEA 128

Query: 136 LKGLA-DEIDPQEKVGRLSLGQRQLVEIAKALSRGAHVIAFDEPTSSLSAREIDRLMAII 194
           +  +  D IDP   VG L +G +Q+VEIA+ L    HV+  DEPT+ L+ARE++ L   I
Sbjct: 129 MAHVGLDAIDPDTLVGELGIGHQQMVEIARNLIGDCHVLILDEPTAMLTAREVEMLFEQI 188

Query: 195 GRLRDEGKVVLYVSHRMEEVFRICNAVTVFKDGRYVRTFENMSELTHDQLVTCMVGRDIQ 254
            RL+  G  ++Y+SHR+EE+ R+   + V +DG  V   E M+    +QLVT MVGR++ 
Sbjct: 189 TRLQSRGVSIIYISHRLEELARVAQRIAVLRDGNLV-CVEPMANYNSEQLVTLMVGRELG 247

Query: 255 DIYDYRPRERGDVALQVKGLLGPGLHEPVSFQVHKGEILGLFGLVGAGRTELLRLLSGLE 314
           +  D   R+ G   L V GL        VSF+V  GEI G+ GL+GAGRTELLRL+ G +
Sbjct: 248 EHIDMGARKIGAPVLTVNGLSRSDKVRDVSFEVRAGEIFGISGLIGAGRTELLRLIFGAD 307

Query: 315 RQREGSLVLHD--KELKLRSPRDAIAAGVLLCPEDRKKEGIIPLGSVGENINISARPSHS 372
               G++ L    + + +RSP DA+  G+ L  EDRK EG++   S+G NI +   P  S
Sbjct: 308 IADSGTIALGAPAQVINVRSPVDAVGHGIALITEDRKGEGLLLTQSIGANIALGNMPGIS 367

Query: 373 TLGCLLRGDWERGNADKQIKSLKVKTPTAGQKIMYLSGGNQQKAILGRWLSMPMKVLLLD 432
             G  +  D ER  A +QI ++++++    Q +  LSGGNQQK ++GRWL     VLL D
Sbjct: 368 GAG-FVDNDKERALAQRQIDAMRIRSSGPAQLVSELSGGNQQKVVIGRWLERDCSVLLFD 426

Query: 433 EPTRGIDIGAKAEIYQIIHNLAADGIAVIVVSSDLMEVMGISDRILVLCEGAMRGELSRD 492
           EPTRGID+GAK +IY ++  L   G A++VVSSDL E+M I DRI VL  G++     RD
Sbjct: 427 EPTRGIDVGAKFDIYNLLGELTRQGKALVVVSSDLRELMLICDRIGVLSAGSLIDTFDRD 486

Query: 493 QANESNLLQLALPRQRVADA 512
              +  LL  A    +  DA
Sbjct: 487 SWTQDELLAAAFAGYQKRDA 506


Lambda     K      H
   0.320    0.138    0.391 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 685
Number of extensions: 48
Number of successful extensions: 9
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 514
Length of database: 517
Length adjustment: 35
Effective length of query: 479
Effective length of database: 482
Effective search space:   230878
Effective search space used:   230878
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 52 (24.6 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory