Align Methylcrotonoyl-CoA carboxylase subunit alpha, mitochondrial; MCCase subunit alpha; 3-methylcrotonyl-CoA carboxylase 1; 3-methylcrotonyl-CoA:carbon dioxide ligase subunit alpha; EC 6.4.1.4 (characterized)
to candidate PfGW456L13_52 Biotin carboxylase of acetyl-CoA carboxylase (EC 6.3.4.14)
Query= SwissProt::Q2QMG2 (737 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_52 Length = 452 Score = 403 bits (1035), Expect = e-116 Identities = 208/444 (46%), Positives = 290/444 (65%), Gaps = 5/444 (1%) Query: 39 VEKVLVANRGEIACRVMRTARRLGIPTVAVYSDADRGALHVRAADEAVRLGPPPARESYL 98 +EKVL+ANRGEIA R++R + +GI TVAVYS AD+ +H+ ADE+V +GP A SYL Sbjct: 5 LEKVLIANRGEIALRILRACKEMGIKTVAVYSKADKELMHLGLADESVCIGPASAAHSYL 64 Query: 99 NASAIVDAALRTGAKAIHPGYGFLSESADFAQLCKAEGLTFIGPPPSAIRDMGDKSASKR 158 + AI+ AA TGA AIHPGYGFL+E+ADFA+ + G FIGP IR MGDK ++K Sbjct: 65 HIPAIIAAAEVTGATAIHPGYGFLAENADFAEQVEKSGFAFIGPKAETIRLMGDKVSAKH 124 Query: 159 IMGAAGVPLVPGYHG-AEQDIELLKLEANKIGYPVLIKPTHGGGGKGMRIVQRPEDFVDS 217 M AAGVP VPG G +D E ++GYPV+IK GGGG+GMR+V + ED + S Sbjct: 125 AMIAAGVPTVPGSDGPLPEDEETALRIGREVGYPVIIKAAGGGGGRGMRVVHKEEDLIAS 184 Query: 218 VLSAQREAAASFGINTLLVEKYITQPRHIEVQIFGDQHGNVIHLYERDCSLQRRHQKIIE 277 + EA A+FG + +EK++T PRH+EVQ+ D G IHL +RDCSLQRRHQK++E Sbjct: 185 AKLTRSEAGAAFGNPMVYLEKFLTNPRHVEVQVLSDGQGQAIHLGDRDCSLQRRHQKVLE 244 Query: 278 EAPAPNVTAQFRSHIGEAAVSAAKAVGYYSAGTVEFIVDTLSGEFYFMEMNTRLQVEHPV 337 EAPAP + R + V A +GY AGT EF+ + +G FYF+EMNTR+QVEHPV Sbjct: 245 EAPAPGIDENAREEVLARCVRACIDIGYRGAGTFEFLYE--NGRFYFIEMNTRVQVEHPV 302 Query: 338 TEMIVGQDLVEWQIRIANGECLPLSQEQVPLNGHAFEARIYAENVPRGFLPATGTLHHYR 397 +EM+ G D+V+ + IA G L +Q+ V + GHA E RI AE+ P+ F+P+ GT+ H+ Sbjct: 303 SEMVTGIDIVKEMLSIAAGNKLSFTQDDVVIRGHALECRINAED-PKTFMPSPGTVKHFH 361 Query: 398 PVPSTATVRVETGVEEGDTVSMHYDPMIAKLVVWGESRNAALVKLKNSLSNFQIAGLPTN 457 P VRV++ + G V +YD +I KL+ +G +R+ A+ +++N+L + G+ TN Sbjct: 362 -APGGNGVRVDSHLYSGYAVPPNYDSLIGKLITYGATRDEAMARMRNALDEIVVDGIKTN 420 Query: 458 VGFLQELAGHSAFEKGLVDTHFIE 481 + ++L F KG V+ H++E Sbjct: 421 IPLHRDLTRDEGFCKGGVNIHYLE 444 Lambda K H 0.317 0.133 0.389 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 739 Number of extensions: 33 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 737 Length of database: 452 Length adjustment: 36 Effective length of query: 701 Effective length of database: 416 Effective search space: 291616 Effective search space used: 291616 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory