Align Phosphogluconate dehydratase; EC 4.2.1.12; 6-phosphogluconate dehydratase (uncharacterized)
to candidate PfGW456L13_3725 Dihydroxy-acid dehydratase (EC 4.2.1.9)
Query= curated2:P31961 (608 letters) >lcl|FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_3725 Dihydroxy-acid dehydratase (EC 4.2.1.9) Length = 560 Score = 219 bits (558), Expect = 2e-61 Identities = 156/493 (31%), Positives = 243/493 (49%), Gaps = 32/493 (6%) Query: 113 DGVTQGEPGMELSLASRDVIAMSTAIALSHNMFDAALCLGVCDKIVPGLLIGSLRFGHLP 172 DG+ G GM+ SL SR+VIA S + FD + +G CDK +PG LIG R P Sbjct: 86 DGIANGTEGMKYSLVSREVIADSIEVVTGCEGFDGLVTIGGCDKNMPGCLIGMARLNR-P 144 Query: 173 TVFVPAGPMPTGISNKEKAAVRQLF---AEGKATREELLASEMASYHAPGTCTFYGTANT 229 ++FV G + G + + +V + A G + ++ E + PG+C TANT Sbjct: 145 SIFVYGGTIQPGAGHTDIISVFEAVGQHARGDISEIQVKQIEEVAIPGPGSCGGMYTANT 204 Query: 230 NQLLVEVMGLHLPGASFVNPNTPLRDELTREAARQASRLTPENGNYVPMAEIVDEKAIVN 289 +E +G+ LPG+S + + + A +Q L + + +I+ KA N Sbjct: 205 MASAIEALGMSLPGSSSQDAIGADKASDSFRAGQQVMELLKLD---LKPRDIMTRKAFEN 261 Query: 290 SVVALLATGGSTNHTLHLLAIAQAAGIQLTWQDMSELSHVVPTLARIYPNGQADINHFQA 349 ++ ++A GSTN LHLLA+A A ++LT D EL V P +A + P+G+ ++ A Sbjct: 262 AIRVVIALAGSTNAVLHLLAMANAVDVELTLDDFVELGKVSPVVADLRPSGKYMMSELVA 321 Query: 350 AGGMSFLIRQLLDGGLLHEDVQTVAGPGLRRYTREPFLEDGRLVWREGPERSLDEAILRP 409 GG+ L++++LD G+LH DV TV G L P+ + ++RP Sbjct: 322 IGGIQPLMKRMLDAGMLHGDVLTVTGQTLAENLASV------------PDYPAGQDVIRP 369 Query: 410 LDKPFSAEGGLRLMEGNLGRGVMKVSAVAPEHQVVEAPVRIFHDQASLAAAFKAGELERD 469 D+P + L ++ GNL E E R++H + A GE++ Sbjct: 370 FDQPIKKDSHLVILRGNLSPTGAVAKITGKEGLRFEGTARVYHGEEGALAGILNGEVQPG 429 Query: 470 LVAVVRFQGPRAN-GMPELHKLTPFLGVL-QDRGFKVALVTDGRMSGASGKVPAAIHVSP 527 V V+R++GP+ GM E+ L+P V+ + G +VAL+TDGR SG S H++P Sbjct: 430 EVIVIRYEGPKGGPGMREM--LSPTSAVMGKGLGKEVALITDGRFSGGSHGFVVG-HITP 486 Query: 528 EAIAGGPLARLRDGDRVRVDGVNGELRVLVDD---AEWQARSLEPAPQDGNLGCGRELFA 584 EA GGP+A + +GDR+ +D + V V D AE ++R + P + R + A Sbjct: 487 EAFEGGPIALVENGDRIIIDAETRLITVDVSDAVLAERKSRWVRPESK-----YKRGVLA 541 Query: 585 FMRNAMSSAEEGA 597 +SSA EGA Sbjct: 542 KYAKTVSSASEGA 554 Lambda K H 0.319 0.135 0.397 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 808 Number of extensions: 48 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 608 Length of database: 560 Length adjustment: 36 Effective length of query: 572 Effective length of database: 524 Effective search space: 299728 Effective search space used: 299728 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory