Align Phosphogluconate dehydratase; EC 4.2.1.12; 6-phosphogluconate dehydratase (uncharacterized)
to candidate PfGW456L13_973 Dihydroxy-acid dehydratase (EC 4.2.1.9)
Query= curated2:P31961 (608 letters) >lcl|FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_973 Dihydroxy-acid dehydratase (EC 4.2.1.9) Length = 613 Score = 219 bits (558), Expect = 3e-61 Identities = 172/545 (31%), Positives = 261/545 (47%), Gaps = 56/545 (10%) Query: 68 VAIVSAYNDMLSAHQPFERFPGLIKQALHEIGSVGQFAGGVPAMCDGVTQGEPGMELSLA 127 +AI +++ + H + L+ + + G V + + A+ DG+ G GM SL Sbjct: 37 IAIANSFTQFVPGHVHLKDLGQLVAREIERAGGVAKEFNTI-AVDDGIAMGHDGMLYSLP 95 Query: 128 SRDVIAMSTAIALSHNMFDAALCLGVCDKIVPGLLIGSLRFGHLPTVFVPAGPMPTGISN 187 SR++IA S ++ + DA +C+ CDKI PG+L+ SLR ++P +FV GPM G Sbjct: 96 SREIIADSVEYMVNAHCADAIVCISNCDKITPGMLMASLRL-NIPVIFVSGGPMEAG--- 151 Query: 188 KEKAAVRQL--------FAEGKATREELLASEMASYHAPGTCTFYGTANTNQLLVEVMGL 239 K K A L A+ A+ E++ E ++ G+C+ TAN+ LVE +GL Sbjct: 152 KTKLASHGLDLVDAMVIAADSSASDEKVAEYERSACPTCGSCSGMFTANSMNCLVEALGL 211 Query: 240 HLPGASFVNPNTPLRDELTREAARQ----ASRLTPENGNYVPMAEIVDEKAIVNSVVALL 295 LPG R++L +A R R EN V I + +A N++ + Sbjct: 212 ALPGNGSTLATHSDREQLFLQAGRTIVELCKRYYGENDQSVLPRNIANFQAFENAMTLDI 271 Query: 296 ATGGSTNHTLHLLAIAQAAGIQLTWQDMSELSHVVPTLARIYPNGQA-DINHFQAAGGMS 354 A GGSTN LHLLA AQ A I +D+ LS VP L ++ PN Q + AGG+ Sbjct: 272 AMGGSTNTILHLLAAAQEAEIDFDLRDIDRLSRNVPQLCKVAPNIQKYHMEDVHRAGGIF 331 Query: 355 FLIRQLLDGGLLHEDVQTV---------------------------AGP-GLRRYTREPF 386 ++ L GGLLH + TV AGP G+ T+ F Sbjct: 332 SILGSLARGGLLHTQLPTVHSRSMEEAIAKWDITQTNDEAVHHFFKAGPAGIP--TQTAF 389 Query: 387 LEDGRLVWREGPERSLDEAILRPLDKPFSAEGGLRLMEGNLGRG--VMKVSAVAPEHQVV 444 + R W E + + +R ++ +S EGGL ++ GN+ V+K + V V Sbjct: 390 SQSTR--W-ETLDDDRENGCIRSVEHAYSQEGGLAVLYGNIALDGCVVKTAGVDESIHVF 446 Query: 445 EAPVRIFHDQASLAAAFKAGELERDLVAVVRFQGPRAN-GMPELHKLTPFLGVLQDRGFK 503 E +IF Q S A E++ + ++R++GP+ GM E+ T +L + G Sbjct: 447 EGNAKIFESQDSAVRGILADEVKEGDIVIIRYEGPKGGPGMQEMLYPTSYL-KSKGLGKA 505 Query: 504 VALVTDGRMSGASGKVPAAIHVSPEAIAGGPLARLRDGDRVRVDGVNGELRVLVDDAEWQ 563 AL+TDGR SG + + H SPEA AGG + ++DGD+V +D N + +LV D E Sbjct: 506 CALLTDGRFSGGTSGLSIG-HASPEAAAGGAIGLVQDGDKVLIDIPNRSINLLVSDEELA 564 Query: 564 ARSLE 568 AR +E Sbjct: 565 ARRVE 569 Lambda K H 0.319 0.135 0.397 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 869 Number of extensions: 50 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 608 Length of database: 613 Length adjustment: 37 Effective length of query: 571 Effective length of database: 576 Effective search space: 328896 Effective search space used: 328896 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory