Align Ribose import ATP-binding protein RbsA; EC 7.5.2.7 (characterized, see rationale)
to candidate PfGW456L13_3911 Ribose ABC transport system, ATP-binding protein RbsA (TC 3.A.1.2.1)
Query= uniprot:D8IZC7 (521 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_3911 Length = 517 Score = 326 bits (836), Expect = 1e-93 Identities = 202/516 (39%), Positives = 294/516 (56%), Gaps = 13/516 (2%) Query: 6 LLQMRGIRKSFGATLALSDMHLTIRPGEIHALMGENGAGKSTLMKVLSGVHAPDQGEILL 65 +L + GI K++ A L+ + LT+ GE+ AL GENGAGKSTL K++ G+ P G++ Sbjct: 9 VLSVSGIGKTY-AQPVLAGIDLTLMRGEVLALTGENGAGKSTLSKIIGGLVTPTTGQMQY 67 Query: 66 DGRPVALRDPGASRAAGINLIYQELAVAPNISVAANVFMGSELRTRLGLIDHAAMRSRTD 125 G+ + A GI ++ QEL + P +SVA N+F+ + L ++ G I +R Sbjct: 68 QGQDYRPGSRAQAEALGIRMVMQELNLLPTLSVAENLFLDN-LPSKGGWISRKQLRKAAI 126 Query: 126 AVLRQLGA-GFGASDLAGRLSIAEQQQVEIARALVHRSRIVIMDEPTAALSERETEQLFN 184 + +G L G L I QQ VEIAR L+ ++I+DEPTA L+ RE E LF Sbjct: 127 EAMAHVGLDAIDPDTLVGELGIGHQQMVEIARNLIGDCHVLILDEPTAMLTAREVEMLFE 186 Query: 185 VVRRLRDEGLAIIYISHRMAEVYALADRVTVLRDGSFVGELVRDEIDSERIVQMMVGRSL 244 + RL+ G++IIYISHR+ E+ +A R+ VLRDG+ V +SE++V +MVGR L Sbjct: 187 QITRLQSRGVSIIYISHRLEELARVAQRIAVLRDGNLVCVEPMANYNSEQLVTLMVGREL 246 Query: 245 SEFYQHQRIAPADAAQLPTVMQVRALA-GGKIRPASFDVRAGEVLGFAGLVGAGRTELAR 303 E A P V+ V L+ K+R SF+VRAGE+ G +GL+GAGRTEL R Sbjct: 247 GEHID----MGARKIGAP-VLTVNGLSRSDKVRDVSFEVRAGEIFGISGLIGAGRTELLR 301 Query: 304 LLFGADPRSGGDILLEGRP---VHIDQPRAAMRAGIAYVPEDRKGQGLFLQMAVAANATM 360 L+FGAD G I L G P +++ P A+ GIA + EDRKG+GL L ++ AN + Sbjct: 302 LIFGADIADSGTIAL-GAPAQVINVRSPVDAVGHGIALITEDRKGEGLLLTQSIGANIAL 360 Query: 361 NVASRHTRLGLVRSRSLGGVARAAIQRLNVKVAHPETPVGKLSGGNQQKVLLARWLEIAP 420 + G V + +A+ I + ++ + P V +LSGGNQQKV++ RWLE Sbjct: 361 GNMPGISGAGFVDNDKERALAQRQIDAMRIRSSGPAQLVSELSGGNQQKVVIGRWLERDC 420 Query: 421 KVLILDEPTRGVDIYAKSEIYQLVHRLASQGVAVVVISSELPEVIGICDRVLVMREGMIT 480 VL+ DEPTRG+D+ AK +IY L+ L QG A+VV+SS+L E++ ICDR+ V+ G + Sbjct: 421 SVLLFDEPTRGIDVGAKFDIYNLLGELTRQGKALVVVSSDLRELMLICDRIGVLSAGSLI 480 Query: 481 GELAGAAITQENIMRLATDTNVPRTAPASHSSPTPL 516 + TQ+ ++ A R A ++P L Sbjct: 481 DTFDRDSWTQDELLAAAFAGYQKRDAQLVEAAPRDL 516 Lambda K H 0.320 0.135 0.378 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 706 Number of extensions: 34 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 521 Length of database: 517 Length adjustment: 35 Effective length of query: 486 Effective length of database: 482 Effective search space: 234252 Effective search space used: 234252 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory