Align Inositol transport system ATP-binding protein (characterized)
to candidate PfGW456L13_3911 Ribose ABC transport system, ATP-binding protein RbsA (TC 3.A.1.2.1)
Query= reanno::Phaeo:GFF717 (261 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_3911 Length = 517 Score = 128 bits (321), Expect = 3e-34 Identities = 79/248 (31%), Positives = 126/248 (50%), Gaps = 7/248 (2%) Query: 1 MSMSQP--LIRMQGIEKHFGSVIALAGVSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHK 58 MS+ P ++ + GI K + + LAG+ + + GE L G+NGAGKST K + G+ Sbjct: 1 MSVCAPNAVLSVSGIGKTYAQPV-LAGIDLTLMRGEVLALTGENGAGKSTLSKIIGGLVT 59 Query: 59 PTKGDILFEGQPLHFADPRDAIAAGIATVHQHLAMIPLMSVSRNFFMGNEPIRKIGPLKL 118 PT G + ++GQ A A GI V Q L ++P +SV+ N F+ N P + Sbjct: 60 PTTGQMQYQGQDYRPGSRAQAEALGIRMVMQELNLLPTLSVAENLFLDNLPSKG----GW 115 Query: 119 FDHDYANRITMEEMRKMGINLRGPDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSA 178 + +E M +G++ PD VG L G +Q V IAR + VLILDEPT+ Sbjct: 116 ISRKQLRKAAIEAMAHVGLDAIDPDTLVGELGIGHQQMVEIARNLIGDCHVLILDEPTAM 175 Query: 179 LGVRQTANVLATIDKVRKQGVAVVFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAE 238 L R+ + I +++ +GV++++I+H + V R VL G + + ++E Sbjct: 176 LTAREVEMLFEQITRLQSRGVSIIYISHRLEELARVAQRIAVLRDGNLVCVEPMANYNSE 235 Query: 239 ELQDMMAG 246 +L +M G Sbjct: 236 QLVTLMVG 243 Score = 90.5 bits (223), Expect = 6e-23 Identities = 62/220 (28%), Positives = 103/220 (46%), Gaps = 7/220 (3%) Query: 26 VSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPTKGDILF--EGQPLHFADPRDAIAAG 83 VS +V GE + G GAG++ ++ + G G I Q ++ P DA+ G Sbjct: 276 VSFEVRAGEIFGISGLIGAGRTELLRLIFGADIADSGTIALGAPAQVINVRSPVDAVGHG 335 Query: 84 IATVHQHL---AMIPLMSVSRNFFMGNEPIRKIGPLKLFDHDYANRITMEEMRKMGINLR 140 IA + + ++ S+ N +GN P I D+D + ++ M I Sbjct: 336 IALITEDRKGEGLLLTQSIGANIALGNMP--GISGAGFVDNDKERALAQRQIDAMRIRSS 393 Query: 141 GPDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVRQTANVLATIDKVRKQGVA 200 GP Q V LSGG +Q V I R + VL+ DEPT + V ++ + ++ +QG A Sbjct: 394 GPAQLVSELSGGNQQKVVIGRWLERDCSVLLFDEPTRGIDVGAKFDIYNLLGELTRQGKA 453 Query: 201 VVFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAEEL 240 +V ++ ++R + + DR VL+ G + T R + +EL Sbjct: 454 LVVVSSDLRELMLICDRIGVLSAGSLIDTFDRDSWTQDEL 493 Lambda K H 0.321 0.137 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 322 Number of extensions: 24 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 261 Length of database: 517 Length adjustment: 30 Effective length of query: 231 Effective length of database: 487 Effective search space: 112497 Effective search space used: 112497 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 49 (23.5 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory