Align Aromatic amino acid transporter AroP (characterized, see rationale)
to candidate PfGW456L13_318 Histidine transport protein (permease)
Query= uniprot:A0A2Z5MFR8 (461 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_318 Length = 468 Score = 396 bits (1017), Expect = e-115 Identities = 197/457 (43%), Positives = 288/457 (63%), Gaps = 12/457 (2%) Query: 7 QDGLKRGLKNRHIQLIALGGAIGTGLFLGSASVLQAAGPSMILGYAIGGVIAFMIMRQLG 66 + GLKRGL RHI+ +ALG AIGTGLF GSAS +Q AGP+++L Y IGG FM+MR LG Sbjct: 5 EKGLKRGLSARHIRFMALGSAIGTGLFYGSASAIQMAGPAVLLAYLIGGAAVFMVMRALG 64 Query: 67 EMVAQEPVAGSFSHFAYKYWGDFPGFLSGWNYWVLYVLVSMAELTAVGTYVHYWWPGVPT 126 EM PVAGSF +A Y G GF+ GW Y V+V MA++TA G Y+ +W+P V Sbjct: 65 EMAVHNPVAGSFGQYASTYLGPMAGFILGWTYAFEMVIVGMADVTAFGIYMGFWFPEVSR 124 Query: 127 WVSALVCFAGINAINLANVKAYGETEFWFAIIKVVAVIGMILFGGYLL---VSGHGGPQA 183 W+ L + + +NL NVK +GE EFW +++KV A++ MIL G ++ +S G Sbjct: 125 WIWVLGVVSIVGGLNLCNVKVFGEMEFWLSLLKVAAIVAMILGGFGIMWFGISSAPGQAT 184 Query: 184 SISNLWSHGGFFPHGFHGLFTMLAVIMFSFGGLELIGITAAEADEPQKSIPKAVNQVIYR 243 ISNLWSHGGF P+G GL AV+MF+FGG+E+IG+TA EA +PQ +P+A+N V R Sbjct: 185 DISNLWSHGGFMPNGMGGLIASFAVVMFAFGGIEIIGVTAGEAKDPQHVLPRAINAVPLR 244 Query: 244 ILIFYICSLAVLLSLYPWNEVAAGGSPFVMIFSQIGSTLTANVLNVVVLTAALSVYNSGV 303 IL+FY+ ++ VL+S++PW ++ + GSPFV IF ++G + A +LN+VV+TAA+S NS + Sbjct: 245 ILLFYVLTMLVLMSIFPWQQIGSQGSPFVQIFDKLGISSAATILNIVVITAAISAINSDI 304 Query: 304 YANSRMLYGLAEQGNAPRALMKVDRRGVPYMAIGLSALATFTCVIVNYLIPAEALGLLMA 363 + RM++GLA+QG+AP+ ++ R GVP+M + + + A V++NYLIP L+ + Sbjct: 305 FGAGRMMFGLAQQGHAPKGFARLSRNGVPWMTVVVMSAALLLGVLLNYLIPENVFLLIAS 364 Query: 364 LVVAALVLNWALISLTHLKSRRAMVAAGETLVFKSFWFPVSNW-----ICLAFMALILVI 418 + A V W +I +T + RR+M +A + K FPV W +AFM I + Sbjct: 365 VATFATVWVWLMILVTQVAMRRSM-SAEQVAQLK---FPVPLWPYAPAAAIAFMLFIFGV 420 Query: 419 LAMTPGLSVSVLLVPLWLVVMWAGYAFKRRRAAAHVA 455 L P ++++ +W+V++ Y + AA A Sbjct: 421 LGYFPDTQAALIVGVVWIVLLVLAYLTWVKPAAGQAA 457 Lambda K H 0.327 0.140 0.440 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 569 Number of extensions: 29 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 461 Length of database: 468 Length adjustment: 33 Effective length of query: 428 Effective length of database: 435 Effective search space: 186180 Effective search space used: 186180 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory