Align phenylacetate-CoA ligase (EC 6.2.1.30) (characterized)
to candidate PfGW456L13_1910 Long-chain-fatty-acid--CoA ligase (EC 6.2.1.3)
Query= BRENDA::A7KUK6 (562 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_1910 Length = 562 Score = 203 bits (517), Expect = 1e-56 Identities = 176/558 (31%), Positives = 261/558 (46%), Gaps = 57/558 (10%) Query: 21 LFERKDRAYPDDKIIYQDADTQRHYTYKSLRDASLDFGKGLKALYEWRKGDVLALFTPNS 80 +FER + + D T TY L S F L+A + GD +A+ PN Sbjct: 29 VFERSCKKFADRPAFSNMGVT---LTYAELERQSAAFAGYLQAHTDLVAGDRIAVQMPNV 85 Query: 81 IDTPVVMWGTLWAGGTISPANPGYTVDELAFQLKNSHAKGLV-------TQASVLP---V 130 + P+ ++G L AG + NP YT E+ Q K+S A+ LV VLP + Sbjct: 86 LHYPIAVFGALRAGLIVVNTNPLYTAREMRHQFKDSGARALVYLNMFGQKVQEVLPDTDI 145 Query: 131 AREAAKKVG--MPEDRIILIGD------QRDPDARVKHFTSVRNISGATRYRKQKITPAK 182 K+G MP + L+ + PD + S + S R I P K Sbjct: 146 QYLIEAKMGDLMPAAKGWLVNTVVSKVKKMVPDYSLPQAVSFK--SALRMGRGLGIKPLK 203 Query: 183 ----DVAFLVYSSGTTGVPKGVMISHRNIVANIRQ------QFIAEGEMLSWNGGPDGKG 232 D+A L Y+ GTTG+ KG M++H N+VAN++Q QF ++G+ L G Sbjct: 204 VGLDDIAVLQYTGGTTGLAKGAMLTHGNLVANMQQARACLGQFGSDGQPLLREGQ----- 258 Query: 233 DRVLAFLPFYHIYGLTCLITQALYKGYH-LIVMSKFDIEKWCAHVQNYRCSFSYIVPPVV 291 + ++A LP YHIY T + G H +++ + DI + ++N+R S + + Sbjct: 259 EVMIAPLPLYHIYAFTANCMCMMVTGNHNVLITNPRDIAGFIKELKNWRFSALLGLNTLF 318 Query: 292 LLLGKHPVVDKYDLSSLRMMNSGAAPLTQELVEAVYSRIKVGIKQGYGLSETSPTTHSQR 351 + L HP D SSL++ NSG L + E I +GYGL+ETSP + Sbjct: 319 VALMDHPDFKTLDFSSLKLTNSGGTALVKATAERWEQLTGCRITEGYGLTETSPVACTNP 378 Query: 352 WEDWREAMGSVGRLMPNMQAKYMTMPEDGSEPKEVGEGEVGELYLKGPNVFLGYHENPEA 411 + D + +G+VG +P K + +DG E GE GEL +KGP + GY + P+A Sbjct: 379 YGD-QSRIGTVGLPVPGTTLKVIN--DDGVEQPL---GERGELCIKGPQIMKGYWQKPDA 432 Query: 412 TKGCLSEDGWFQTGDVGYQDAKGNFYITDRVKELIKYKGFQVPPAELEGYLVDNDAIDDV 471 T L +GWF++GD+ D G I DR K++I GF V P E+E ++ + + + Sbjct: 433 TAEVLDAEGWFKSGDIAVIDPDGFVRIVDRKKDMIIVSGFNVYPNEIEDVVMAHPNVANC 492 Query: 472 AVIGIESETHGSEVPMACVVRSAKSKSSGTS-EKDEAARIIKWLDSKVASHKRLRGGVHF 530 AVIG+ E G V + V R A G S E+ +A + KV H LR Sbjct: 493 AVIGVPDERSGEAVKLFVVAREA-----GVSLEELKAYCKENFTAYKVPKHIVLR----- 542 Query: 531 VDEIPKNPSGKILRRILK 548 + +P P GKILRR L+ Sbjct: 543 -ESLPMTPVGKILRRELR 559 Lambda K H 0.317 0.136 0.410 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 713 Number of extensions: 30 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 562 Length of database: 562 Length adjustment: 36 Effective length of query: 526 Effective length of database: 526 Effective search space: 276676 Effective search space used: 276676 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory