Align phenylacetaldehyde dehydrogenase monomer (EC 1.2.1.39) (characterized)
to candidate PfGW456L13_2690 Aldehyde dehydrogenase (EC 1.2.1.3)
Query= metacyc::MONOMER-15732 (497 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_2690 Length = 502 Score = 516 bits (1330), Expect = e-151 Identities = 252/489 (51%), Positives = 343/489 (70%), Gaps = 5/489 (1%) Query: 10 ATRAFLERKLKMRIGADWQDAASGRTLSFRNPATGEVLGEVPAADAEDVDRAVRAARQAF 69 AT+ FL + KM IG W +A+ G+T P+T ++ +P +D+DRAV+AAR F Sbjct: 17 ATQTFLGKVQKMFIGGAWVEASDGQTSDVVEPSTEGLITRIPMGTTDDLDRAVQAARAQF 76 Query: 70 DDSPWSRLRPRERQNLLWRLADLMERDARQLAELECLNNGKSAAVAQVMDVQLAIDFLRY 129 D W + +P ER+ ++ RLADL+E++A +LA++E ++ GKS A A+ +D+Q +D LRY Sbjct: 77 DGGAWRQAKPAERERMMQRLADLIEQNAAELAQIESIDMGKSVAFAKDVDIQGTVDTLRY 136 Query: 130 MAGWATKIEGSTVEASMPLMPNDQFHGFVRREAIGVVGAIVAWNFPLLLACWKLGPALAT 189 AGWATK+ G TVE S+P + + R+EA+GVVGAIV WNFPL WKLG ALAT Sbjct: 137 FAGWATKLHGRTVEPSLP----GNYLAYTRKEAVGVVGAIVPWNFPLQTMAWKLGAALAT 192 Query: 190 GCTIVLKPADETPLSVLKLAELVDEAGYPAGVFNVVTGTGLNAGAALSRHPGVDKLTFTG 249 GCT+V+KPA+ T LS L+ AELV EAG P GV N+VTG G GAA++ HPG+DKLTFTG Sbjct: 193 GCTVVVKPAELTSLSALRFAELVQEAGIPDGVINIVTGRGSVVGAAMATHPGIDKLTFTG 252 Query: 250 STEVGKLIGKAAMDNMTRVTLELGGKSPTIVMPDANLQEAAAGAATAIFFNQGQVCCAGS 309 ST VG+ +G+AA+D+M R+TLELGGKSP IV DA++ AA A +FFN GQVC AG+ Sbjct: 253 STPVGQTVGRAALDDMKRLTLELGGKSPVIVCADADIPAAAQAVANGVFFNSGQVCDAGT 312 Query: 310 RLYVHRKHFDNVVADIAGIANGMKLGNGLDPAVQMGPLISAKQQDRVTGYIELGRELGAT 369 R Y+H +D + ++ +K+ GLDP +GPL+SA Q+ RVT YIE G+ GA Sbjct: 313 RAYIHSSVYDEFLRELITYTRTLKMAPGLDPDCFIGPLVSALQKQRVTEYIETGKAEGAE 372 Query: 370 VACGGEGF-GPGYFVKPTVIVDVDQRHRLVQEEIFGPVLVAMPFDDLDEVIGMANDNPYG 428 + GG+ GPG+FV+PT+ + R+VQEEIFGPVLV PFDD +E + +AND+PYG Sbjct: 373 LVYGGQPVDGPGFFVEPTIFANCRNDMRIVQEEIFGPVLVTAPFDDEEEALALANDSPYG 432 Query: 429 LGASIWSNDLAAVHRMIPRIKSGSVWVNCHSALDPALPFGGYKMSGVGREVGAAAIEHYT 488 L A+++SNDL VH +IPR+K+GSV+VN H LDP++PFGGYK SG G+++GA +++ Sbjct: 433 LAAALYSNDLGKVHSLIPRLKAGSVYVNAHGTLDPSMPFGGYKQSGFGKDLGAEQLDYLL 492 Query: 489 ELKSVLIKL 497 E K+V I L Sbjct: 493 ETKAVWITL 501 Lambda K H 0.320 0.137 0.413 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 694 Number of extensions: 31 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 497 Length of database: 502 Length adjustment: 34 Effective length of query: 463 Effective length of database: 468 Effective search space: 216684 Effective search space used: 216684 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory